Главная · Дизайн · Суточное вращение земли. О суточном вращении неба Вращение звездного неба

Суточное вращение земли. О суточном вращении неба Вращение звездного неба

Представьте себе, что вы кружитесь, как это бывало в детстве. А на пуговице вашей рубашки сидит микроскопический человечек. Что он увидит и почувствует?

Ему покажется, что вокруг него крутится вся обстановка комнаты: стулья, стол, телевизор, картины на стенах, причём взаимное расположение всех этих предметов будет оставаться неизменным….

И только две точки, - одна точка вверху, на потолке, а другая точка внизу, на полу, останутся неподвижными.

А если любимая кошка вдруг пойдёт куда-то по своим делам, то её расположение по отношению к домашней обстановке будет меняться.

И самое удивительное. Микроскопическому человечку покажется, что именно он неподвижен, а всё вращается вокруг него, потому что люди не всегда могут ощущать собственное движение. Например, бывает, что мы смотрим в окно вагона и не знаем, или это соседний поезд поехал, или наш поезд медленно и плавно тронулся с места. Ещё пример, когда мы сидим в самолёте, то не чувствуем, что летим со скоростью в сотню метров в секунду.

К чему всё это?

А к тому, что сказанное можно повторить дословно, если принять, что мы, - микроскопические человечки, живущие на вращающейся вокруг своей оси Земле. Обстановка комнаты, - это как бы звёзды, кошка - Луна, две неподвижные точки, - полюса мира.

Мы живём на вращающейся вокруг своей оси Земле, а нам кажется, что всё небо вращается вокруг нас, делая полный оборот примерно за сутки. Поэтому такое вращение называется суточным движением неба.

Суточное движение видно невооружённым глазом: через пару часов поворот неба буквально бросается в глаза.

А вот фотография неба, выполненная неподвижной камерой, выдержка один час. Почти все звёзды получились в виде линий, потому что их положение на небе за время фотографирования менялось.

Единственная звезда, которая осталась неподвижной и выглядит на фотографии в виде точки, - Полярная звезда. Это далеко не самая яркая звезда, которая замечательна тем, что очень близка к Северному полюсу мира, - к той точке неба, которая остаётся неподвижной при суточном движении неба.

Диаметрально противоположная точка неба, - Южный полюс мира, тоже остаётся неподвижной. Южный полюс мира нам, жителям северного полушария Земли, не виден, он всегда под горизонтом. А в южном полушарии Земли, наоборот, виден один лишь Южный полюс мира.

О расстояниях на небе.

К небу линейку не приставить, расстояния в метрах или сантиметрах не измерить. Можно измерять лишь углы между двумя какими-либо направлениями.

Например, углы между двумя какими-либо звёздами, или угол между центрами дисков Солнца и Луны и т.п.

В частности, полюса мира, - диаметрально противоположные точки, поэтому угол между ними - 180°.

Точки, удалённые на 90° как от Северного, так и от Южного полюса мира, составляют небесный экватор. Аналогично точки земного экватора одинаково удалены от полюсов Земли.

Небесный экватор разделяет небо на две половины. Та половина неба, которая содержит Северный полюс мира, называется северным полушарием неба, а другая, содержащая Южный полюс мира называется южным полушарием. И здесь тоже полная аналогия с Землёй.

О созвездиях и звёздных картах.

А теперь вспомните, - вы вращались, а предметы обстановки в комнате не меняли своего взаимного расположения.

Точно также и звёзды сохраняют в процессе суточного вращения неба своё взаимное расположение, образуя характерные рисунки. Такие рисунки называются в просторечии созвездиями.

Например, в правой верхней части фотографии вблизи горизонта видно созвездие Ориона.

Буйная фантазия людей усмотрела в группе ярких звёзд из созвездия Ориона человека. В греческой мифологии Орион был знаменитым охотником, который мог победить любую дичь.

В прошлом звёздное небо изображалось в виде рисунков с картинками, вроде той, на которой изображён Орион - охотник и Телец - дичь.

В наше время пользуются картами звёздного неба, которые отличаются от фотографий или от рисунков неба тем, что

На картах есть координатные линии, т.е. объекты на карту наносятся согласно их небесным координатам. Аналогично на географических картах тоже имеются координатные линии (параллели и меридианы), причём объекты на карту наносятся согласно их координатам - географической широте и долготе.

Небесные объекты изображаются с помощью условных обозначений, поэтому зрительно вид звёздного неба и карта заметно различаются (точно так же как вид какой-то местности из окна самолёта зрительно отличается от карты этой же местности).

На карте звёзды изображены чёрными кружками. Чем больше кружок по размерам, тем ярче звезда.

Характерная деталь в созвездии Ориона - три звезффды, расположенные рядом на одной прямой.

Если вдоль этой прямой перевести взгляд влево, то можно увидеть самую яркую звезду неба - Сириус, иначе она называется α (альфа) Большого Пса, - Canis Major по латыни. И на рисунке, и на карте Сириус изображён в левом нижнем углу.

Жирная синяя линия - часть небесного экватора. Более слабые синие линии, параллельные и перпендикулярные небесному экватору - это координатные линии.

Пунктирные линии - границы созвездий. Созвездие это вовсе не группа звёзд, как думают многие.

Созвездие - это область неба в определённых, установленных международным соглашением границах. Всего на небе 88 созвездий. И всё. - Больше места на небе нет!

А теперь вспомните: микроскопический человечек видел, что кошка, которая пошла по своим делам, перемещается по отношению к предметам домашней обстановки.

Аналогично, Луна обращается вокруг Земли и поэтому довольно быстро движется по небу относительно звёзд. Вы сами можете убедиться в этом. - Уже спустя сутки Луна будет видна на фоне других звёзд.

И вообще, все небесные тела Солнечной системы перемещаются по небу, меняя своё положение среди звёзд.

ОСНОВЫ СФЕРИЧЕСКОЙ И ПРАКТИЧЕСКОЙ АСТРОНОМИИ

ГЛАВА 1

Значение астрономии

Астрономия и ее методы имеют большое значение в жизни современного общества. Вопросы, связанные с измерением времени и обеспечением человечества знанием точного времени, решаются теперь специальными лабораториями - службами времени, организованными, как правило, при астрономических учреждениях.

Астрономические методы ориентировки наряду с другими по-прежнему широко применяются в мореплавании и в авиации, а в последние годы - и в космонавтике.

Вычисление и составление календаря, который широко применяется в народном хозяйстве, также основаны на астрономических знаниях.

Составление географических и топографических карт, предвычисление наступлений морских приливов и отливов, определение силы тяжести в различных точках земной поверхности с целью обнаружения залежей полезных ископаемых - все это в своей основе имеет астрономические методы.

Исследования процессов, происходящих на различных небесных телах, позволяют астрономам изучать материю в таких ее состояниях, какие еще не достигнуты в земных лабораторных условиях. Поэтому астрономия, и в частности астрофизика, тесно связанная с физикой, химией, математикой, способствует развитию последних, а они, как известно, являются основой всей современной техники.

Астрономия, изучая небесные явления, исследуя природу, строение и развитие небесных тел, доказывает, что Вселенная подчинена единым законам природы и в согласии с ними развивается во времени и в пространстве. Поэтому выводы астрономии имеют глубокое философское значение.


В какой бы точке земной поверхности мы ни находились, нам всегда кажется, что все небесные тела находятся от нас на одинаковом расстоянии на внутренней поверхности некоторой сферы, которая в просторечии называется небесным сводом , или просто небом .

Днем небо, если оно не закрыто облаками, имеет голубой цвет, и мы видим на нем самое яркое небесное светило - Солнце. Иногда, одновременно с Солнцем, днем видна Луна и очень редко некоторые другие небесные тела, например, планета Венера.

В безоблачную ночь на темном небе мы видим звезды, Луну, планеты, туманности, иногда кометы и другие тела. Первое впечатление от наблюдения звездного неба - это бесчисленность звезд и беспорядочность расположения их на небе. В действительности звезд, видимых невооруженным глазом, не так много, как кажется, всего лишь около 6 тысяч на всем небе, а на одной половине его, которая видна в данный момент из какой-либо точки земной поверхности, не более 3 тысяч.

Звезды обладают двумя свойствами: 1) отличаются по яркости друг от друга; 2) относительно неподвижны. Эти свойства позволяют выделить на небе фигуры из звезд, называемые созвездиями .



Система созвездий нашего неба была создана еще за 500 лет до н.э. древними греками.

Созвездия обозначались названиями животных (Большая Медведица, Лев, Дракон и т.п.), именами героев греческой мифологии (Кассиопея, Андромеда, Персей и т.д.) или просто названиями тех предметов, которые напоминали фигуры, образованные яркими звездами группы (Северная Корона, Треугольник, Стрела, Весы и т.п.).

С XVII в. отдельные звезды в каждом созвездии стали обозначаться буквами греческого алфавита, причем, как правило, в порядке убывания их яркости. Несколько позже была введена числовая нумерация, употребляемая в настоящее время в основном для слабых звезд. Кроме того, яркие звезды (около 130) получили собственные имена. Например: a Большого Пса называется Сириусом, a Возничего - Капеллой, a Лиры - Вегой, a Ориона - Бетельгейзе, b Ориона - Ригелем, b Персея - Алголем и т.д. Эти названия и обозначения звезд применяются и в настоящее время. Однако границы созвездий, намеченные древними астрономами и представлявшие извилистые линии, в 1922 г. на состоявшемся астрономическом съезде были изменены, некоторые большие созвездия были разделены на несколько самостоятельных созвездий, а под созвездиями стали понимать не фигуры из звезд, а участки звездного неба . Теперь все небо условно разделено на 88 отдельных участков - созвездий.

Наиболее яркие звезды в созвездиях служат хорошими ориентирами для нахождения на небе более слабых звезд или других небесных объектов.

Если в ясную ночь пронаблюдать звездное небо в течение нескольких часов, то легко заметить, что небесный свод, как одно целое, со всеми находящимися на нем светилами плавно вращается около некоторой воображаемой оси, один конец которой проходит через место наблюдения, а другой- очень близко около Полярной звезды. Это вращение небесного свода и светил называется суточным движением звездного неба , так как одно полное обращение совершается за сутки. Вследствие суточного вращения звезды и другие небесные тела непрерывно меняют свое положение относительно сторон горизонта и описывают круги вокруг оси вращения.

Причины вращения звездного неба

Почему же звездное небо как будто вращается и почему именно Полярная звезда почти неподвижна? Оказывается, причина этого кажущегося движения звезд заключается во вращении Земли, Подобно тому как человеку, кружащемуся по комнате, представляется, будто вся комната кружится вокруг него, так и мы, находящиеся на вращающейся Земле, видим, будто бы движутся звезды. Из географии известно, что воображаемая ось, вокруг которой вращается земной шар, пересекает поверхность Земли в двух точках. Эти точки - Северный и Южный географические полюсы. Если направление земной оси продолжить, то оно пройдет вблизи Полярной звезды. Вот почему Полярная звезда кажется почти неподвижной. Она находится у Северного полюса мира.

На южном звездном небе, которое в нашем Северном полушарии видимо только частично из-за шарообразной формы Земли, находится вторая неподвижная точка - Южный полюс мира, - вокруг которой вращаются южные звезды.

Познакомимся теперь более подробно с кажущимся суточным движением звезд. Повернитесь лицом к южной стороне горизонта и наблюдайте за движением звезд. Для того чтобы эти наблюдения было удобнее проводить, представьте себе полуокружность, которая проходит через зенит (точка прямо над головой) и полюс мира. Эта полуокружность пересечется с горизонтом в точке севера (под Полярной звездой) и в противоположной ей точке юга. Эту линию астрономы называют небесным меридианом. Она делит небосвод на восточную и западную половины. Наблюдая за движением звезд в южной части неба, мы заметим, что звезды, расположенные слева от небесного меридиана (т. е. в восточной части неба), поднимаются над горизонтом. Пройдя через небесный меридиан и попав в западную часть неба, они начинают опускаться к горизонту.

Значит, когда они проходили через небесный меридиан, то в этот момент они достигли своей наибольшей высоты над горизонтом. Астрономы называют прохождение звезды через наивысшее положение над горизонтом верхней кульминацией данной звезды.

Если вы повернетесь лицом к северу и станете наблюдать за движением звезд в северной части неба, то заметите, что звезды, проходящие через небесный меридиан ниже Полярной звезды, в этот момент занимают наиболее низкое положение над горизонтом. Двигаясь слева направо, они, пройдя небесный меридиан, начинают подниматься. Когда звезда проходит через наинизшее из возможных положений над горизонтом, астрономы говорят, что звезда находится в нижней кульминации.

Таким образом, если звезда проходит через линию небесного меридиана между полюсом мира (или приблизительно Полярной звездой) и точкой юга, то это будет верхняя кульминация звезды.

Страница 2 из 5

2.1.2. Небесная сфера. Особые точки небесной сферы.

Люди в древности считали, что все звезды располагаются на небесной сфере, которая как единое целое вращается вокруг Земли. Уже более 2.000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что этой сферы реально не существует.

Небесная сфера - воображаемая шаровая поверхность произвольного радиуса, в центре которой находится глаз наблюдателя, и на которую мы проецируем положение небесных светил.

Понятием небесной сферы пользуются для угловых измерений на небе, для удобства рассуждений о простейших видимых небесных явлениях, для различных расчетов, например вычисления времени восхода и захода светил.

Построим небесную сферу и проведем из ее центра луч по направлению к звезде А (рис.1.1).

Там, где этот луч пересечет поверхность сферы, поместим точку А 1 изображающую эту звезду. Звезда В будет изображаться точкой В 1 . Повторив подобную операцию для всех наблюдаемых звезд, мы получим на поверхности сферы изображение звездного неба – звездный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направление на сами звезды и на их изображения на сфере будут совпадать.

  • Что является центром небесной сферы? (Глаз наблюдателя)
  • Каков радиус небесной сферы? (Произвольный)
  • Чем отличаются небесные сферы двух соседей по парте? (Положением центра).

Для решения многих практических задач расстояния до небесных тел не играют роли, важно лишь их видимое расположение на небе. Угловые измерения не зависят от радиуса сферы. Поэтому, хотя в природе небесной сферы и не существует, но астрономы для изучения видимого расположение светил и явлений, которые можно наблюдать на небе в течении суток или многих месяцев, применяют понятие Небесная сфера. На такую сферу и проецируются звезды, Солнце, Луна, планеты и т.д, отвлекаясь от действительных расстояний до светил и рассматривая лишь угловые расстояние между ними. Расстояния между звездами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующими им дугами на поверхности сферы.

Для приближенной оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звездами ковша Большой Медведицы (α и β) составляет около 5° (рис. 1.2), а от α Большой Медведицы до α Малой Медведицы (Полярной звезды) – в 5 раз больше – примерно 25°.

Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.

Только два светила – Солнце и Луну – мы видим как диски. Угловые диаметры этих дисков почти одинаковы – около 30" или 0,5°. Угловые размеры планет и звезд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооруженного глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2–3". Это означает, в частности, что наш глаз различает каждую по отдельности светящуюся точку (звезду) в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

Отвесная линия Z, Z’ , проходящая через глаз наблюдателя (точка С), находящегося в центре небесной сферы, пересекает небесную сферу в точках Z - зенит, Z’ - надир .

Зенит - эта наивысшая точка над головой наблюдателя.

Надир - противоположная зениту точка небесной сферы .

Плоскость, перпендикулярная отвесной линии, называется горизонтальной плоскостью (или плоскостью горизонта) .

Математическим горизонтом называется линия пересечения небесной сферы с горизонтальной плоскостью, проходящей через центр небесной сферы.

Невооруженным глазом на всем небе можно видеть примерно 6000 звезд, но мы видим лишь половину из них, потому что другую половину звездного неба закрывает от нас Земля. Движутся ли звезды по небосводу? Оказывается, движутся все и притом одновременно. В этом легко убедиться, наблюдая звездное небо (ориентируясь по определенным предметам).

Вследствие ее вращения вид звездного неба меняется. Одни звезды только еще появляются из-за горизонта (восходят) в восточной его части, другие в это время находятся высоко над головой, а третьи уже скрываются за горизонтом в западной стороне (заходят). При этом нам кажется, что звездное небо вращается как единое целое. Теперь каждому хорошо известно, что вращение небосвода - явление кажущееся, вызванное вращением Земли.

Картину того, что в результате суточного вращения Земли происходит со звездным небом, позволяет запечатлеть фотоаппарат.

На полученном снимке каждая звезда оставила свой след в виде дуги окружности (рис. 2.3). Но есть и такая звезда, передвижение которой в течение всей ночи почти незаметно. Эту звезду назвали Полярной. Она в течение суток описывает окружность малого радиуса и всегда видна почти на одной и той же высоте над горизонтом в северной стороне неба. Общий центр всех концентрических следов звезд находится на небе неподалеку от Полярной звезды. Эта точка, в которую направлена ось вращения Земли, получила название северный полюс мира. Дуга, которую описала Полярная звезда, имеет наименьший радиус. Но и эта дуга, и все остальные - независимо от их радиуса и кривизны - составляют одну и ту же часть окружности. Если бы удалось сфотографировать пути звезд на небе за целые сутки, то на фотографии получились бы полные окружности - 360°. Ведь сутки - это период полного оборота Земли вокруг своей оси. За час Земля повернется на 1/24 часть окружности, т. е. на 15°. Следовательно, длина дуги, которую звезда опишет за это время, составит 15°, а за полчаса - 7,5°.

Звезды в течение суток описывают тем большие окружности, чем дальше от Полярной звезды они находятся.

Ось суточного вращения небесной сферы называют осью мира (РР" ).

Точки пересечения небесной сферы с осью мира называют полюсами мира (точка Р - северный полюс мира, точка Р" - южный полюс мира).

Полярная звезда расположена вблизи северного полюса мира. Когда мы смотрим на Полярную звезду, точнее, на неподвижную точку рядом с ней - северный полюс мира, направление нашего взгляда совпадает с осью мира. Южный полюс мира находится в южном полушарии небесной сферы.

Плоскость ЕА WQ , перпендикулярная оси мира РР" и проходящая через центр небесной сферы, называется плоскостью небесного экватора , а линия пересечения ее с небесной сферой - небесным экватором .

Небесный экватор – линия окружности, полученная от пересечения небесной сферы с плоскостью проходящая через центр небесной сферы перпендикулярно к оси мира.

Небесный экватор делит небесную сферу на два полушария: северное и южное.

Ось мира, полюса мира и небесный экватор аналогичны оси, полюсам и экватору Земли, так как перечисленные названия связаны с видимым вращением небесной сферы, а оно является следствием действительного вращения земного шара.

Плоскость, проходящая через точку зенита Z , центр С небесной сферы и полюс Р мира, называют плоскостью небесного меридиана , а линия пересечения ее с небесной сферой образует линию небесного меридиана .

Небесный меридиан – большой круг небесной сферы, проходящий через зенит Z, полюс мира Р, южный полюс мира Р", надир Z"

В любом месте Земли плоскость небесного меридиана совпадает с плоскостью географического меридиана этого места.

Полуденная линия NS - это линия пересечения плоскостей меридиана и горизонта. N – точка севера, S – точка юга

Она названа так потому, что в полдень тени от вертикальных предметов падают по этому направлению.

  • Каков период вращения небесной сферы? (Равен периоду вращения Земли – 1 сутки).
  • В каком направлении происходит видимое (кажущееся) вращение небесной сферы? (Противоположно направлению вращения Земли).
  • Что можно сказать о взаимном расположении оси вращения небесной сферы и земной оси? (Ось небесной сферы и земная ось будут совпадать).
  • Все ли точки небесной сферы участвуют в видимом вращении небесной сферы? (Точки, лежащие на оси, покоятся).

Земля движется по орбите вокруг Солнца. Ось вращения Земли наклонена к плоскости орбиты на угол 66,5°. Вследствие действия сил тяготения со стороны Луны и Солнца ось вращения Земли смещается, в то время как наклон оси к плоскости земной орбиты остается постоянным. Ось Земли как бы скользит по поверхности конуса. (то же происходит с осью у обыкновенного волчка в конце вращения).

Это явление было открыто еще в 125 г. до н. э. греческим астрономом Гиппархом и названо прецессией .

Один оборот земная ось совершает за 25 776 лет – этот период называется платоническим годом. Сейчас вблизи Р – северного полюса мира находится Полярная звезда – α Малой Медведицы. Полярной называется та звезда, которая на сегодняшний день находится вблизи Северного полюса мира. В наше время, примерно с 1100 года, такой звездой является альфа Малой Медведицы – Киносура. Раньше титул Полярной поочередно присваивался π, η и τ Геркулеса, звездам Тубан и Кохаб. Римляне вовсе не имели Полярной звезды, а Кохаб и Киносуру (α Малой Медведицы) называли Стражами.

На начало нашего летоисчисление – полюс мира был вблизи α Дракона – 2000 лет назад. В 2100 г полюс мира будет всего в 28" от Полярной звезды – сейчас в 44". В 3200г полярным станет созвездие Цефей. В 14000 г – полярной будет Вега (α Лиры).

Как найти в небе Полярную звезду?

Чтобы найти Полярную звезду, нужно через звезды Большой Медведицы (первые 2 звезды "ковша") мысленно провести прямую линию и отсчитать по ней 5 расстояний между этими звездами. В этом месте рядом с прямой мы увидим звезду, почти одинаковую по яркости со звездами "ковша" – это и есть Полярная звезда.

В созвездии, которое нередко называют Малый Ковш, Полярная звезда является самой яркой. Но так же, как и большинство звезд ковша Большой Медведицы, Полярная - звезда второй величины.

Летний (летне-осенний) треугольник = звезда Вега (α Лиры, 25,3 св. лет), звезда Денеб (α Лебедя, 3230 св. лет), звезда Альтаир (α Орла, 16,8 св. лет)

Причем период этого вращения равен звездным суткам - периоду полного оборота небесной сферы относительно Земли.

Все экспериментальные доказательства вращения Земли вокруг оси сводятся к доказательству того, что система отсчета, связанная с Землей, является неинерциальной системой отсчета специального вида - системой отсчета, совершающей вращательное движение относительно инерциальных систем отсчёта .

В отличие от инерциального движения (то есть равномерного прямолинейного движения относительно инерциальных систем отсчета), для обнаружения неинерциального движения замкнутой лаборатории не обязательно производить наблюдения над внешними телами, - такое движение обнаруживается с помощью локальных экспериментов (то есть экспериментов, произведенных внутри этой лаборатории). В этом (именно в этом!) смысле слова неинерциальное движение, включая вращение Земли вокруг оси, может быть названо абсолютным.

Силы инерции

Центробежная сила на вращающейся Земле.

Эффекты центробежной силы

Зависимость ускорения свободного падения от географической широты. Эксперименты показывают, что ускорение свободного падения зависит от географической широты : чем ближе к полюсу, тем оно больше. Это объясняется действием центробежной силы. Во-первых, точки земной поверхности, расположенные на более высоких широтах, ближе к оси вращения и, следовательно, при приближении к полюсу расстояние от оси вращения уменьшается, доходя до нуля на полюсе. Во-вторых, с увеличением широты угол между вектором центробежной силы и плоскостью горизонта уменьшается, что приводит к уменьшению вертикальной компоненты центробежной силы.

Это явление было открыто в 1672 году, когда французский астроном Жан Рише, находясь в экспедиции в Африке , обнаружил, что у экватора маятниковые часы идут медленнее, чем в Париже . Ньютон вскоре объяснил это тем, что период колебаний маятника обратно пропорционален квадратному корню из ускорения свободного падения, которое уменьшается на экваторе из-за действия центробежной силы.

Сплюснутость Земли. Влияние центробежной силы приводит к сплюснутости Земли у полюсов. Это явление, предсказанное Гюйгенсом и Ньютоном в конце XVII века, было впервые обнаружено в конце 1730-х годов в результате обработки данных двух французских экспедиций, специально снаряженных для решения этой проблемы в Перу и Лапландию .

Эффекты силы Кориолиса: лабораторные эксперименты

Маятник Фуко на северном полюсе. Ось вращения Земли лежит в плоскости колебаний маятника.

Существует ряд других опытов с маятниками, используемых для доказательства вращения Земли . Например, в опыте Браве (1851 г.) использовался конический маятник. Вращение Земли доказывалось тем, что периоды колебаний по и против часовой стрелки различались, поскольку сила Кориолиса в этих двух случаях имела разный знак. В 1853 г. Гаусс предложил использовать не математический маятник, как у Фуко , а физический , что позволило бы уменьшить размеры экспериментальной установки и увеличить точность эксперимента. Эту идею реализовал Камерлинг-Оннес в 1879 г.

Отклонение снарядов при орудийной стрельбе. Другим наблюдаемым проявлением силы Кориолиса является отклонение траекторий снарядов (в северном полушарии вправо, в южном - влево), выстреливаемых в горизонтальном направлении. С точки зрения инерциальной системы отсчета, для снарядов, выстреливаемых вдоль меридиана , это связано с зависимостью линейной скорости вращения Земли от географической широты: при движении от экватора к полюсу снаряд сохраняет горизонтельную компоненту скорости неизменной, в то время как линейная скорость вращения точек земной поверхности уменьшается, что приводит к смещения снаряда от меридиана в сторону вращения Земли. Если выстрел был произведен параллельно экватору, то смещение снаряда от параллели связано с тем, что траектория снаряда лежит в одной плоскости с центром Земли, в то время как точки земной поверхности движутся в плоскости, перпендикулярной оси вращения Земли .

Отклонение свободно падающих тел от вертикали. Если скорость движения тела имеет большую вертикальную составляющую, сила Кориолиса направлена к востоку, что приводит к соответствующему отклонению траектории тела, свободно падающего (без начальной скорости) с высокой башни . При рассмотрении в инерциальной системе отсчета эффект объясняется тем, что вершина башни относительно центра Земли движется быстрее, чем основание , благодаря чему траектория тела оказывается узкой параболой и тело слегка опережает основание башни .

Эффект Этвёша. Ни низких широтах сила Кориолиса при движении по земной поверхности направлена в вертикальном направлении и её действие приводит к увеличению или уменьшению ускорения свободного падения, в зависимости от того, движется ли тело назапад или восток. Этот эффект назван эффектом Этвёша в честь венгерского физика Роланда Этвёша, экспериментально обнаружившего его в начале XX века.

Опыты, использующие закон сохранения момент импульса. Некоторые эксперименты основаны на законе сохранения момента импульса : в инерциальной системе отсчёта величина момента импульса (равная произведению момента инерции на угловую скорость вращения) под действием внутренних сил не меняется. Если в некоторый начальный момент времени установка неподвижна относительно Земли, то скорость её вращения относительно инерциальной системы отсчета равна угловой скорости вращения Земли. Если изменить момент инерции системы, то должна измениться угловая скорость её вращения, то есть начнётся вращение относительно Земли. В неинерциальной системе отсчёта, связанной с Землёй, вращение возникает в результате действия силы Кориолиса. Эта идея была предложена французским учёным Луи Пуансо в 1851 г.

Первый такой эксперимент был поставлен Хагеном в 1910 г.: два груза на гладкой перекладине были установлены неподвижно относительно поверхности Земли. Затем расстояние между грузами было уменьшено. В результате установка пришла во вращение . Ещё более наглядный опыт поставил немецкий учёный Ханс Букка (Hans Bucka) в 1949 г. Стержень длиной примерно 1,5 метра был установлен перпендикулярно прямоугольной рамке. Первоначально стержень был горизонтален, установка была неподвижной относительно Земли. Затем стержень был приведен в вертикальное положение, что привело к изменения момента инерции установке примерно в раз и её быстрому вращению с угловой скоростью, в раз превышающей скорость вращения Земли .

Воронка в ванне. Поскольку сила Кориолиса очень слаба, она оказывает пренебрежимо малое влияние на направление закручивания воды при сливе в раковине или ванне, поэтому в общем случае направление вращения в воронке не связано с вращением Земли. Однако в тщательно контролируемых экспериментах можно отделить действие силы Кориолиса от других факторов: в северном полушарии воронка будет закручена против часовой стрелки, в южном - наоборот .

Эффекты силы Кориолиса: явления в окружающей природе

Закон Бэра. Как впервые отметил петербургский академик Карл Бэр в 1857 году, реки размывают в северном полушарии правый берег (в южном полушарии - левый), который вследствие этого оказывается более крутым (закон Бэра). Объяснение эффекта аналогично объяснению отклонения снарядов при стрельбе в горизонтальном направлении: под действием силы Кориолиса вода сильнее ударяется в правый берег, что приводит к его размытию, и, наоборот, отступает от левого берега .

Циклон над юго-восточным побережьем Исландии (вид из космоса).

Ветры: пассаты, циклоны, антициклоны. С наличием силы Кориолиса, направленной в северном полушарии вправо и в южном влево, связаны также атмосферные явления: пассаты, циклоны и антициклоны. Явление пассатов вызывается неодинаковостью нагрева нижних слоёв земной атмосферы в приэкваториальной полосе и в средних широтах, приводиящему к течению воздуха вдоль меридиана на юг или север в северном и южном полушариях, соответственно. Действие силы Кориолиса приводит к отклонению потоков воздуха: в северном полушарии - в сторону северо-востока (северо-восточный пассат), в южном полушарии - на юго-восток (юго-восточный пассат).

Оптические эксперименты

В основе ряда опытов, демонстрирующих вращение Земли, используется эффект Саньяка : если кольцевой интерферометр совершает вращательное движение, то вследствие релятивистских эффектов полосы смещаются на угол

,

где - площадь кольца, - скорость света, - угловая скорость вращения. Для демонстрации вращения Земли этот эффект был использован американским физиком Майкельсоном в серии экспериментов, поставленных в 1923-1925 гг. В современных экспериментах, использующих эффект Саньяка, вращение Земли необходимо учитывать для калибровки кольцевых интерферометров.

Существует ряд других экспериментальных демонстраций суточного вращения Земли .

Неравномерность вращения

Прецессия и нутация

Изменение положения полюсов

Замедление вращения с течением времени

Происхождение вращения Земли

История идеи суточного вращения Земли

Античность

Объяснение суточного вращения небосвода вращением Земли вокруг оси впервые было предложено представителями пифагорейской школы , сиракузянами Гикетом и Экфантом. Согласно некоторым реконструкциям, вращение Земли утверждал также пифагореец Филолай из Кротона (V век до н. э.). Высказывание, которое можно трактовать как указание на вращение Земли, содержится в Платоновском диалоге Тимей .

Однако о Гикете и Экфанте практически ничего неизвестно, и даже само их существование иногда подвергается сомнению . Согласно мнению большинства ученых, Земля в системе мира Филолая совершала не вращательное, а поступательное движение вокруг Центрального огня. В других своих произведениях Платон следует традиционному мнению о неподвижности Земли. Однако до нас дошли многочисленные свидетельства, что идею вращения Земли отстаивал философ Гераклид Понтийский (IV век до н. э.) . Вероятно, с гипотезой о вращении Земли вокруг оси связано еще одно предположение Гераклида: каждая звезда представляет собой мир, включающий землю, воздух, эфир, причем всё это располагается в бесконечном пространстве. Действительно, если суточное вращение неба является отражением вращения Земли, то исчезает предпосылка считать звезды находящимися на одной сфере.

Примерно столетие спустя предположение о вращении Земли стало составной частью первой , предложенной великим астрономом Аристархом Самосским (III век до н. э.) . Аристарха поддержал вавилонянин Селевк (II век жо н. э.) , также, как и Гераклид Понтийский считавший Вселенную бесконечной. О том, что идея суточного вращения Земли имела своих сторонников еще в I веке н. э., свидетельствуют некоторые высказывания философов Сенеки , Деркиллида, астронома Клавдия Птолемея . Подавляющее большинство астрономов и философов, однако, не сомневалось в неподвижности Земли.

Аргументы против идеи движения Земли имеются в произведениях Аристотеля и Птолемея . Так, в своем трактате О Небе Аристотель обосновает неподвижность Земли тем, что на вращающейся Земле брошенные вертикально вверх тела не могли бы упасть в ту точку, из которой началось их движение: поверхность Земли сдвигалась бы под брошенным телом . Другой довод в пользу неподвижности Земли, приводимый Аристотелем, основан на его физической теории: Земля является тяжелым телом, а для тяжелых тел свойственно движение к центру мира, а не вращение вокруг него.

Ариабхату поддержал только один астроном, Пртхудака (IX век) . Большинство индийских ученых отстаивало неподвижность Земли. Так, астроном Варахамихира (VI в.) утверждал, что на вращающейся Земле летящие в воздухе птицы не могли бы вернуться к своим гнездам, а камни и деревья слетали бы с поверхности Земли. Выдающийся астроном Брахмагупта (VI в.) повторил также старый аргумент, что тело, упавшее с высокой горы, но смогло бы опуститься к ее основанию. При этом он, однако, отверг один из доводов Варахамихиры : по его мнению, даже если бы Земля вращалась, предметы не могли бы оторваться от нее вследствие своей тяжести.

Исламский Восток. Возможность вращения Земли рассматривали многие ученые мусульманского Востока. Так, известный геометр ас-Сиджизи изобрел астролябию , принцип действия которой основан на этом предположении . Некоторые исламские ученые (имена которых до нас не дошли) даже нашли правильный способ опровержения основного довода против вращения Земли: вертикальности траекторий падающих тел. По существу, при этом был высказан принцип суперпозиции движений, согласно которому любое перемещение можно разложить на два или несколько составляющих: по отношению к поверхности вращающейся Земли падающее тело двигается по отвесной линии, но точка, являющаяся проекцией этой линии на поверхность Земли, переносится бы ее вращением. Об этом свидетельствует знаменитый ученый-энциклопедист ал-Бируни , который сам, однако, склонялся к неподвижности Земли. По его мнению, если на падающее тело будет действовать какая-то дополнительная сила, то результат ее действия на вращающейся Земле приведет к некоторым эффектам, которые на самом деле не наблюдаются .

Среди ученых XIII-XVI веков, связанных с Марагинской и Самаркандской обсерваториями, развернулась дискуссия о возможности эмпирического обоснования неподвижности Земли. Так, известный астроном Кутб ад-Дин аш-Ширази (XIII-XIV вв.) полагал, что неподвижность Земли может быть удостоверена экспериментом. С другой стороны, основатель Марагинской обсерватории Насир ад-Дин ат-Туси полагал, что если бы Земля вращалась, то это вращение разделял бы слой воздуха, прилегающий к ее поверхности, и все движения вблизи поверхности Земли происходили бы точно также, как если бы Земля была неподвижной. Он это обосновывал с помощью наблюденй комет: согласно Аристотелю , кометы являются метеорологическим явлением в верхних слоях атмосферы; тем не менее, астрономические наблюдения показывают, что кометы принимают участие в суточном вращении небесной сферы. Следовательно, верхние слои воздуха увлекаются вращением небосвода, поэтому и нижние слои также могут увлекаться вращением Земли. Таким образом, эксперимент не может дать ответ на вопрос о том, вращается ли Земля. Однако он оставался сторонником неподвижности Земли, поскольку это соответствовало философии Аристотеля.

Большинство исламских ученых более позднего времени (ал-Урди, ал-Казвини , ан-Найсабури , ал-Джурджани , ал-Бирджанди и другие) были согласны с ат-Туси , что все физические явления на вращающейся и неподвижной Землей проистекали бы одинаково. Однако роль воздуха при этом уже не считалась принципиальной: не только воздух, но и все предметы переносятся вращающейся Землей. Следовательно, для обоснования неподвижности Земли необходимо привлекать учение Аристотеля .

Особую позицию в этих спорах занял третий директор Самаркандской обсерватории Ала ад-Дин Али ал-Кушчи (XV в.), отвергавший философию Аристотеля и считавший вращение Земли физически возможным . В XVII веке к аналогичному выводу пришел иранский теолог и ученый-энциклопедист Баха ад-Дин ал-Амили . По его мнению, астрономы и философы не представили достаточных доказательств, опровергающих вращение Земли .

Латинский Запад. Подробое обсуждение возможности движения Земли широко содержится в сочинениях парижских схоластов Жана Буридана , Альберта Саксонского , и Николая Орема (вторая половина XIV в.). Важнейшим аргументом в пользу вращения Земли, а не неба, приведенным в их работах, является малость Земли по сравнению со Вселенной, что делает приписывание суточного вращение небосвода Вселенной в высшей степени противостественным.

Однако все эти ученые в конечном итоге отвергли вращение Земли, хотя и на разных основаниях. Так, Альберт Саксонский полагал, что эта гипотеза не способна объяснить наблюдаемые астрономические явления. С этим справедливо не согласились Буридан и Орем , по мнению которых небесные явления должны происходить одинаково независимо от того, что совершает вращение, Земля или Космос. Буридан смог найти только один существенный довод против вращения Земли: стрелы, пускаемые вертикально вверх, падают вниз по отвесной линии, хотя при вращении Земли они, по его мнению, должны были бы отставать от движения Земли и падать к западу от точки выстрела.

Николай Орем.

Но даже и этот довод был отвергнут Оремом . Если Земля вращается, то стрела летит вертикально вверх и одновременно с этим движется на восток, будучи захваченная воздухом, вращающимся вместе с Землей. Таким образом, стрела должна упасть на то же место, откуда она была выпущена. Хотя здесь снова упоминается об увлекающей роли воздуха, в действительности он не играет особой роли. Об этом говорит следующая аналогия:

Подобным образом, если бы воздух был закрыт в движущемся судне, то человеку, окруженному этим воздухом, показалось бы, что воздух не движется… Если бы человек находился в корабле, движущемся с большой скоростью на восток, не зная об этом движении, и если бы он вытянул руку по прямой линии вдоль мачты корабля, ему бы показалось, что его рука совершает прямолинейное движение; точно так же, согласно этой теории, нам представляется, что такая же вещь происходит со стрелой, когда мы пускаем ее вертикально вверх или вертикально вниз. Внутри корабля, движущегося с большой скоростью на восток, могут иметь место все виды движения: продольное, поперечное, вниз, вверх, во всех направлениях - и они кажутся точно такими же, как тогда, когда корабль пребывает неподвижным.

Далее Орем приводит формулировку, предвосхищающую принцип относительности :

Я заключаю, следовательно, что с помощью какого бы то ни было опыта невозможно продемонстрировать, что небеса имеют суточное движение и что Земля его не имеет.

Тем не менее, окончательный вердикт Орема о возможности вращения Земли был отрицательным. Основанием для такого вывода был текст Библии :

Однако до сих пор все поддерживают и я верю, что они [Небеса], а не Земля движется, ибо «Бог сотворил круг Земли, который не поколеблется», несмотря на все противоположные аргументы.

О возможности суточного вращения Земли упоминали и средневековые европейские ученые и философы более позднего времени, однако никаких новых аргументов, не содержавшихся у Буридана и Орема , добавлено не было.

Таким образом, практически никто из средневековых ученых так и не принял гипотезу о вращении Земли. Однако в ходе ее обсуждения учеными Востока и Запада было высказано множество глубоких мыслей, которые потом будут повторены учеными Нового времени.

Эпоха Возрождения и Новое время

Николай Коперник.

В первой половине XVI века увидели свет несколько сочинений, утверждавших, что причиной суточного вращения небосвода является вращение Земли вокруг оси. Одним из них был трактат итальянца Челио Кальканьини «О том, что небо неподвижно, а Земля вращается, или о вечном движении Земли» (написан около 1525 г., издан в 1544 г.). Он не произвел большого впечатления на современников, поскольку к тому времени уже был опубликован фундаментальный труд польского астронома Николая Коперника «О вращениях небесных сфер» (1543 г.), где гипотеза суточного вращения Земли у него стала частью гелиоцентрической системы мира , как у Аристарха Самосского . Свои мысли Коперник ранее изложил в небольшом рукописном сочинении Малый Комментарий (не ранее 1515 г.). Два года ранее основного труда Коперника вышло сочинение немецкого астронома Георга Иоахима Ретика Первое повествование (1541 г.), где популярно изложена теория Коперника.

В XVI веке Коперника полностью поддержали астрономы Томас Диггес, Ретик , Кристоф Ротман, Михаэль Мёстлин, физики Джамбатиста Бенедетти, Симон Стевин , философ Джордано Бруно , богослов Диего де Цунига . Некоторые учёные принимали вращение Земли вокруг оси, отвергая её поступательное движение. Такова была позиция немецкого астронома Николаса Реймерса, известного также как Урсус, а также итальянского философа Франческо Патрици. Не совсем ясна точка зрения выдающегося физика Вильяма Гильберта , который поддержал осевое вращение Земли, но не высказывался по поводу её поступательного движения. В начале XVII века гелиоцентрическая система мира (включая вращение Земли вокруг оси) получила внушительную поддержку со стороны Галилео Галилея и Иоганна Кеплера . Наиболее влиятельными противниками идеи движения Земли в XVI - начале XVII века были астрономы Тихо Браге и Христофор Клавиус .

Гипотеза о вращении Земли и становление классической механики. По существу, в XVI-XVII вв. единственным аргументом в пользу осевого вращения Земли было то, что в этом случае отпадает надобность в приписывании звездной сфере огромных скоростей вращения, ведь еще в античности уже было надежно установлено, что размер Вселенной значительно превышает размер Земли (этот аргумент содержался еще у Буридана и Орема).

Против этой гипотезы высказывались соображения, основанные на динамических преставлениях того времени. Прежде всего, это вертикальность траекторий падающих тел . Появились и другие доводы, например, равная дальность стрельбы в восточном и западном направлениях. Отвечая на вопрос о ненаблюдаемости эффектов суточного вращения в земных экспериментах, Коперник писал:

Вращается не только Земля с соединенной с ней водной стихией, но также и немалая часть воздуха и все, что каким-либо образом сродно с Землёй, или уже ближайший к Земле воздух пропитанный земной и водной материей, следует тем же самым законам природы, что и Земля, или имеет приобретенное движение, которое сообщается ему прилегающей Землей в постоянном вращении и без всякого сопротивления

Таким образом, главную роль в ненаблюдаемости вращения Земли играет увлечение воздуха ее вращением. Такого же мнения придерживались и большинство коперниканцев в XVI веке.

Галилео Галилей.

Иисус воззвал к Господу в тот день, в который предал Господь Аморрея в руки Израилю, когда побил их в Гаваоне, и они побиты были пред лицем сынов Израилевых, и сказал пред Израильтянами: стой, солнце, над Гаваоном, и луна, над долиною Авалонскою !

Поскольку команда остановиться была дана Солнцу, а не Земле, отсюда делался вывод, что суточное движение совершает именно Солнце. Другие отрывки приводились в поддержку неподвижности Земли, например:

Ты поставил землю на твердых основах: не поколеблется она во веки и веки .

Эти отрывки считались противоречащими как мнению о вращении Земли вокруг оси, так и обращению вокруг Солнца.

Сторонники вращения Земли (в частности, Джордано Бруно , Иоганн Кеплер и особенно Галилео Галилей ) проводили защиту по нескольким направлениям. Во-первых, они указывали, что Библия написана языком, понятным простым людям, и если бы ее авторы давали четкие с научной точки зрения формулировки, она не смогла бы выполнять свою основную, религиозную миссию . Так, Бруно писал:

Во многих случаях глупо и нецелесообразно приводить много рассуждений скорее в соответствии с истиной, чем соответственно данному случаю и удобству. Например, если бы вместо слов: «Солнце рождается и поднимается, переваливает через полдень и склоняется к Аквилону» - мудрец сказал: «Земля идет по кругу к востоку и, покидая солнце, которое закатывается, склоняется к двум тропикам, от Рака к Югу, от Козерога к Аквилону», - то слушатели стали бы раздумывать: «Как? Он говорит, что Земля движется? Что это за новости?» В конце концов они его сочли бы за глупца, и он действительно был бы глупцом .

Такого рода ответы давались в основном на возражения, касавшиеся суточного движения Солнца. Во-вторых, отмечалось, что некоторые отрывки Библии должны быть трактованы аллегорически. Так, Галилей отмечал, что если Св. Писание целиком понимать буквально, то окажется, что у Бога есть руки, он подвержен эмоциям типа гнева и т. п. В целом, главной мыслью защитников учения о движении Земли было то, что наука и религия имеют разные цели: наука рассматривает явления материального мира, руководствуясь доводами разума, целью религии является моральное усовершенствование человека, его спасение. Галилей в этой связи цитировал кардинала Баронио , что Библия учит тому, как взойти на небеса, а не тому, как устроены небеса.

Эти доводы были сочтены католической церковью неубедительными, и в 1616 г. учение о вращении Земли было запрещено, а в 1631 г. Галилей был осужден судом инквизиции за его защиту. Однако за пределами Италии этот запрет не оказал существенного влияния на развитие науки и способствовал главным образом падению авторитета самой католической церкви.

Необходимо добавить, что религиозные доводы против движения Земли приводили не только церковные деятели, но и ученые (например, Тихо Браге ). С другой стороны, католический монах Паоло Фоскарини написал небольшое сочинение «Письмо о воззрениях пифагорейцев и Коперника на подвижность Земли и неподвижность Солнца и о новой пифагорейской системе мироздания» (1615 г.), где высказывал соображения, близкие к галилеевским, а испанский богослов Диего де Цунига даже использовал теорию Коперника для толкования некоторых мест Священного Писания (хотя впоследствии он изменил свое мнение). Таким образом, конфликт между богословием и учением о движении Земли был не столько конфликтом между наукой и религией как таковыми, сколько конфликтом между старыми (к началу XVII века уже устаревшими) и новыми методологическими принципами, полагаемыми в основу науки.

Значение гипотезы о вращении Земли для развития науки

Осмысление научных проблем, поднимаемых теорией вращающейся Земли, способствовало открытию законов классической механики и созданию новой космологии, в основе которой лежит представление о безграничности Вселенной. Обсуждавшиеся в ходе этого процесса противоречия между этой теорией и буквалистским прочтением Библии способствовали размежеванию естествознания и религии.

Примечания

  1. Пуанкаре, О науке , с. 362-364.
  2. Впервые этот эффект наблюдал Винченцо Вивиани (ученик Галилея) еще в 1661 г. (Граммель 1923, Hagen 1930, Guthrie 1951).
  3. Теория маятника Фуко подробно изложена в Общем курсе физики Сивухина (Т. 1, § 68).
  4. При советской власти маятник Фуко длиной 98 м демонстрировался в Исаакиевском соборе (Ленинград).
  5. Граммель 1923.
  6. Подробнее см. Михайлов 1984, с. 26.
  7. Расчет эффекта см. в Общем курсе физики Сивухина (Т. 1, § 67).
  8. Угловая скорость основания и вершины одна и та же, но линейная скорость равна произведению угловой скорости на радиус вращения.
  9. Несколько иное, но эквивалентное объяснение основано на II законе Кеплера . Секториальная скорость движущегося в поле тяготения тела, пропорциональная произведению радиуса-вектора тела на квадрат угловой скорости, является постоянной величиной. Рассмотрим простейший случай, когда башня расположена на земной экваторе. Когда тело находится на вершине, его радиус-вектор максимален (радиус Земли плюс высота башни) и угловая скорость равна угловой скорости вращения Земли. При падении тела его радиус-вектор уменьшается, что сопровождается увеличением угловой скорости тела. Таким образом, средняя угловая скорость тела оказывается чуть больше угловой скорости вращения Земли.
  10. См. исторический обзор Armitage 1947.