Главная · Внешняя отделка · Базальные тельца. Тельца базальные Какие простейшие имеют базальное тельце

Базальные тельца. Тельца базальные Какие простейшие имеют базальное тельце

Микротрубочки

Немембранные цилиндрические органоиды. Состоят из субъединиц сократительного белка тубулина . Его молекулы образуют 13 длинных цепей, которые складываются в плотную спираль с полостью внутри. Микротрубочки формируют цитоскелет клетки, обеспечивают циклоз и перемещение органоидов по клетке. Участвуют в образовании клеточного центра, базального тельца и ресничек. Разные виды белка отходят от стенок микротрубочек и способны

  • - связывать микротрубочки в дуплеты и триплеты.
  • - складывать дуплеты и триплеты в цилиндр.
  • - связывать дуплет внутри цилиндра с самим цилиндром.

Клеточный центр

Центросома - немембранный органоид в цитоплазме вблизи ядра. Встречается во всех животных клетках и некоторых клетках растений. Состоит из уплотненной цитоплазмы центросферы и 2 х взаимно перпендикулярных центриолей. Центриоль - полый цилиндр, стенки которого образованы 9 ю триплетами микротрубочек под углом 45*. (9*3)

Образует трубочки цитоскелета, жгутики и реснички. Также участвует в делении клетки: формирует веретено деления , что способствует равномерному расхождению хромосом.

Базальное тельце

Немебранный органоид, состоящий из одного цилиндра, стенки которого образованы 9 ю триплетами микротрубочек. Отличие от центриоли заключается в том, что от каждого триплета к центру отходят белковые нити . Поперечный срез напоминает колесо. Располагаются в основании жгутиков и ресничек, обеспечивая их согласованное движение.

Базальные тельца. Строение и движение ресничек и жгутиков.

Как уже указывалось, у многих клеток животных, вышедших из клеточного цикла, в G 0 -стадии центриоли принимают участие в образовании аппарата движения – ресничек. Их две группы: кинетоцилии , характерные для специальных эпителиев (ресничные эпителии трахеи, яйцеводов) или свободно плавающих клеток (сперматозоиды, простейшие), и так называемые первичные реснички , встречающиеся во многих клетках, не обладающих способностью к движению.

Вначале рассмотрим строение кинетоцилей – подвижных ресничек и жгутиков. В световом микроскопе эти структуры видны как тонкие выросты клетки, в их основании в цитоплазме видны хорошо красящиеся мелкие гранулы – базальные тельца, аналоги центриолей (рис. 287). Клетки, имеющие реснички или жгутики, обладают способностью двигаться, будучи в свободном состоянии, или же перемещать жидкости в случае, если клетки неподвижны. Свободноживущие одноклеточные организмы, снабженные одним или несколькими жгутиками, обычно движутся тем концом вперед, который несет жгутики. Иной способ движения можно видеть у спермиев некоторых животных: жгутик, располагаясь сзади, толкает тело клетки вперед. Скорость движения клеток за счет работы жгутиков может достигать очень большой величины (до 5 мм / мин).

Множественные реснички также могут обеспечивать движение свободноживущих клеток, таких как инфузории или некоторые жгутиконосцы. Реснички эпителиальных клеток многих беспозвоночных и позвоночных животных обеспечивают поток жидкостей вдоль поверхности таких клеток. Число ресничек на клетку может достигать 300 в эпителии трахеи; у инфузории туфельки на клетку приходится 10-14 тыс. рядами расположенных ресничек.

При движении ресничек и жгутиков не происходит уменьшения их длины, поэтому неправильно называть это движение сокращением. Траектория движения ресничек очень разнообразна (рис. 288). В различных клетках это движение может быть маятникообразным, крючкообразным, воронкообразным или волнообразным.

У многоресничных клеток (инфузории, клетки ресничного эпителия) движение ресничек не хаотично, а строго упорядочено. В этом случае реснички расположены рядами. В продольном ряду отдельные реснички начинают движение и проходят отдельные его фазы по очереди, метахронно. В поперечном же ряду все реснички находятся в одной фазе движения (синхронны). Это создает движущую волну по поверхности клетки (рис.)289.

Общая архитектура реснички представлена на рис. 290, 291. Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с постоянным диаметром 300 нм. Этот вырост от основания до самой его верхушки покрыт плазматической мембраной. Внутри выроста расположена аксонема , сложная структура, состоящая в основном из микротрубочек. Нижняя, проксимальная часть реснички, базальное тельце , погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковы (около 200 нм).

На поперечном сечении реснички видна плазматическая мембрана, окружающая аксонему. Аксонема в своем составе имеет девять дублетов микротрубочек, образующих внешнюю стенку цилиндра аксонемы. Дублеты микротрубочек слегка повернуты (около 10 0) по отношению к радиусу аксонемы. Кроме периферических дублетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9х2)+2. В дублетах микротрубочек также различают А-микротрубочку, состоящую из 13 субъединиц, и В-микротрубочку, неполную, содержащую 11 субъединиц. А-микротрубочка несет на себе ручки , которые направлены к В-микротрубочке соседнего дуплета. От А-микротрубочки к центру аксонемы отходит радиальная связка, или спица , оканчивающаяся головкой, присоединяющейся к центральной муфте , имеющей диаметр около 70 нм, окружающей две центральные микротрубочки. Последние лежат отдельно друг от друга на расстоянии около 25 нм. Таким образом, в аксонеме располагается 20 продольных микротрубочек, в то время как в базальном тельце их 27 (рис. 291, 292).

Базальное тельце состоит из 9 триплетов микротрубочек (как и центриоль), имеет ручки, втулку и спицы, расположенные в проксимальной (нижней) ее части. На участке базального тельца, примыкающем к плазматической мембране, есть девять придатков, выступов, идущих от каждого триплета микротрубочек к плазматической мембране и связывающих его с клеточной поверхностью.

Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое: А- и В-микротрубочки триплетов базального тельца продолжаются в А- и В-микротрубочках дуплетов аксонемы. Однако внутренние части аксонемы и базального тельца значительно отличны друг от друга. Часто в зоне перехода базального тела в аксонему наблюдают аморфную поперечную пластинку, которая как бы отделяет эти две части. Центральные микротрубочки аксонемы начинаются от этой пластинки так же, как в этом месте начинается и центральная муфта (капсула) (рис. 290).

В основании ресничек и жгутиков часто встречаются исчерченные корешки , или кинетодесмы, представляющие собой пучки тонких (6 нм) фибрилл, обладающих поперечной исчерченностью (рис. 293). Часто такие исчерченные кинетодесмы простираются от базальных телец вглубь цитоплазмы по направлению к ядру. Роль этих структур не ясна. Они не изменяются при действии колхицина, могут встречаться и в составе центриолей интерфазных клеток, не принимающих участия в образовании ресничек.

При движении ресничек не происходит изменения их длины, они не “сокращаются”, а изгибаются, бьются. Оказалось, что механически отделенные реснички способны к биению в присутствии АТФ. При отделении ресничек базальные тельца остаются в теле клетки. Это означает, что для механической работы ресничек базальное тело не нужно, а только аксонема участвует в генерации движения. Удалось показать, что за движение ресничек отвечают “ручки”, сидящие на А-микротрубочках. При экстракции компонентов ручек реснички перестают биться в присутствии АТФ.

Было найдено, что в состав ручек входят белки динеины . Это большие белковые компоненты, состоящие из 9-12 полипептидных цепей, содержащие 2-3 глобулярные головки, связанные в общий корешок гибкими хвостами (рис. 294). Каждая головка динеина обладает АТФ-азной активностью, которая возрастает примерно в 6 раз при ассоциации с микротрубочками. В состав каждой ручки входит один белковый комплекс, одна молекула динеина. Так как экстракция ручек прекращает биение ресничек, то можно считать, что именно динеин ответственен за это движение, то есть динеин является мотором или двигателем при биении ресничек. Но каков механизм этого движения?

Этот вопрос был решен при использовании выделенных ресничек, лишенных плазматической мембраны, радиальных спиц и связок после частичной обработки аксонем протеазами. Оказалось, что такие аксонемы, содержащие динеиновые ручки, при добавлении к ним АТФ начинают увеличиваться в длину почти до девяти раз и одновременно утончаются. В электронном микроскопе видно, что такая аксонема увеличилась в длину за счет смещения пар микротрубочек одна относительно другой (рис. 295). Другими словами, произошло продольное скольжение дуплетов один относительно другого, аналогично тому, что происходит при сокращении саркомеров в мышце: скольжение миозиновых нитей относительно актиновых. В случае динеина повторные циклы ассоциации с субъединицами тубулина, изменения конформации при связывании АТФ и его гидролизе, вызывают перемещение головок вдоль микротрубочки от (+)-конца к (-)-концу. При этом соседний дуплет двигается к верхушке реснички. Когда ресничка содержит все компоненты, и дуплеты микротрубочек связаны друг с другом и с центральной парой микротрубочек, такие кооперативные смещения дуплетов микротрубочек приводят не к удлинению реснички, а к ее изгибу (рис. 296). Как регулируется последовательное перемещение дуплетов один относительно другого, еще не ясно.

Рост ресничек, удлинение микротрубочек их аксонем происходит на вершине реснички. Следовательно, там локализованы (+)-концы микротрубочек.

Образование аксонемы ресничек происходит за счет роста А- и В-микротрубочек центриолей, которые в этом случае становятся базальным тельцем. В простейшем случае при образовании одиночных ресничек или так называемых первичных ресничек материнская центриоль подходит к плазматической мембране своим дистальным торцом, связывается с ней своими придатками. В это время начинается рост микротрубочек на (+)- концах А- и В-микротрубочек триплетов. Возникают девять дублетов микротрубочек аксонемы, которые, наращиваясь с (+)-концов на верхушке аксонемы как бы вытягивают плазматическую мембрану, образуя вырост – ресничку. Две центральные микротрубочки возникают в связи с плотным веществом, лежащим на границе бывшей центриоли и выроста плазматической мембраны (рис. 290а).

При образовании многоресничных клеток происходит многочисленная репликация центриолей и образование многочисленных ресничек.

В ресничном эпителии позвоночных множественные базальные тельца возникают вокруг так называемых дейтеросом – аморфных электронноплотных структур размером от 60 до 700 нм, по периферии которых происходит закладка множественных зачатков базальных телец. Вокруг одной дейтеросомы образуются до десятка новых базальных телец. Они затем мигрируют к плазматической мембране и принимают участие в образовании аксонем (рис. 298).

Необходимо отметить, что клетки с множеством ресничек теряют способность к делению и не могут выходить из G 0 -стадии клеточного цикла. На смену им из эпителиального пласта приходят стволовые недифференцированные клетки, которые могут делиться и давать новые поколения многоресничных клеток.

Микротрубочки аксонемы устойчивы к действию колхицина, но при росте реснички колхицин полностью прекращает включение новых молекул тубулина, что приводит к торможению роста ресничек.

Вторая категория ресничных клеток – клетки с так называемыми первичными ресничками , не обладающими способностью к движению. Практически все типы клеток, за исключением клеток крови, мышц и кишечного эпителия, в G 0 -периоде образуют первичные реснички, которые отличаются от настоящих ресничек, или киноцилий, тем, что они не имеют пары центральных микротрубочек и не способны к движению. Они образуются в результате того, что диплосома подходит к плазматической мембране и от материнской центриоли начинается рост аксонемы, но без двух центральных микротрубочек. Если клетки культуры фибробластов, обладающих в G 0 -периоде такими ресничками, стимулировать к делению, то эти реснички исчезают, а базальное тельце-центриоль начинает свой цикл как обычная центриоль в клетках, способных к делению.

Функциональное значение этих первичных ресничек не ясно. Но интересно отметить, что при развитии сенсорных клеток сетчатки их наружные сегменты палочек и колбочек возникают сначала за счет образования первичных ресничек. Возможно, что у нерецепторных клеток, имеющих такие первичные реснички, последние выполняют функции внешних анализаторов, являются как бы «антеннами», на поверхности которых рецепторные молекулы плазматической мембраны могут регистрировать механические и химические сигналы, поступающие из внешней межклеточной среды.

Двигательный аппарат бактерий

Многие бактерии способны к быстрому движению с помощью своеобразных бактериальных жгутиков или флагелл.

Основная форма движения бактерий – с помощью жгутика. Жгутики бактерий принципиально отличны от жгутиков эукариотических клеток. По числу жгутиков их делят на: монотрихи – с одним жгутиком, политрихи – с пучком жгутиков, перитрихи - с множеством жгутиков в разных участках поверхности (рис. 299).

Жгутики бактерий имеют очень сложное строение; они состоят из трех основных частей: внешняя длинная волнистая нить (собственно жгутик), крючок, базальное тельце (рис. 300).

Жгутиковая нить построена из белка флагеллина. Его молекулярный вес колеблется в зависимости от вида бактерий (40-60 тыс.). Глобулярные субъединицы флагеллина полимеризуются в спирально закрученные нити так, что образуется трубчатая структура (не путать с микротрубочками эукариот!) с диаметром 12-25 нм, полая изнутри. Флагеллины не способны к движению. Они могут спонтанно полимеризоваться в нити с постоянным шагом волны, характерным для каждого вида. В живых бактериальных клетках нарастание жгутиков происходит на их дистальном конце; вероятно, транспорт флагеллинов происходит через полую середину жгутика.

Вблизи клеточной поверхности жгутиковая нить, флагелла, переходит к более широкому участку, так называемому крючку. Он имеет длину около 45 нм и состоит из другого белка.

Бактериальное базальное тельце не имеет ничего общего с базальным тельцем эукариотической клетки (рис. 290 б, в). Оно состоит из стержня, связанного с крючком и четырех колец – дисков. Два верхних кольца диска, имеющихся у грамотрицательных бактерий, локализованы в клеточной стенке: одно кольцо (L) погружено в липосахаридную мембрану, а второе (P) – в муреиновый слой. Два других кольца - белковый комплекс «S»-статор и «M»-ротор, локализованы в плазматической мембране. К этому комплексу со стороны плазматической мембраны примыкает кольцевой ряд белков Mot A и B.

В базальных тельцах грамположительных бактерий имеется только два нижних кольца, связанных с плазматической мембраной.

Базальные тельца вместе в крючками можно выделить, оказалось, что они содержат в своем составе около 12 различных белков.

Принцип движения бактериальных жгутиков совершенно иной, чем у эукариот. Если у эукариот жгутики движутся за счет продольного скольжения дуплетов микротрубочек, то у бактерий движение жгутиков происходит за счет вращения базального тельца (а именно «S»- и «М»- дисков) вокруг своей оси в плоскости плазматической мембраны.

Это было доказано рядом красивых экспериментов. Так, закрепляя жгутики на подложке с помощью антител к флагеллину, исследователи наблюдали вращение бактерий. Было найдено, что многочисленные мутации по флагеллинам (изменение изгиба нити, «курчавость» и т. д.) не сказываются на способности клеток к движению. Мутации же по белкам базального комплекса часто приводят к потере движения.

Движение бактериальных жгутиков не зависит от АТФ, а осуществляется благодаря трансмембранному градиенту ионов водорода на поверхности плазматической мембраны. При этом происходит вращение М-диска.

В окружении М-диска Mot-белки способны к переносу ионов водорода из периплазматического пространства в цитоплазму (за один оборот переносится до 1000 ионов водорода). При этом происходит вращение жгутика с огромной скоростью, от 5-100 об/сек., что дает возможность бактериальной клетке перемещаться на 25-100 мкм в секунду.

Часть VII. Механизмы клеточного деления.

Глава 24. Митотическое деление клеток. Общая организация митоза

Как постулирует клеточная теория, увеличение числа клеток происходит исключительно за счет деления исходной клетки, предварительно удвоившей свой генетический материал. Это – главное событие в жизни клетки как таковой, а именно завершение воспроизведения себе подобного. Вся «интерфазная» жизнь клеток направлена на полное осуществление клеточного цикла, заканчивающегося клеточным делением. Само же деление клетки – процесс неслучайный, строго генетически детерминированный, где в последовательный ряд выстроена целая цепочка событий.

Как уже указывалось, деление прокариотических клеток протекает без конденсации хромосом, хотя должен существовать ряд метаболических процессов и, в первую очередь, синтезов ряда специфических белков, участвующих в «простом» делении бактериальной клетки надвое.

Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом, которые приобретают вид плотных нитчатых структур. Эти нитчатые хромосомы переносятся в дочерние клетки специальной структурой – веретеном деления. Такой тип деления эукариотических клеток – митоз (от греч. mitos – нити), или кариокинез , или непрямое деление – является единственным полноценным способом увеличения числа клеток. Прямое деление клеток или амитоз достоверно описано только при делении полиплоидных макронуклеусов инфузорий, их микронуклеусы делятся только митотическим путем.

Деление всех эукариотических клеток связано с образованием специального аппарата клеточного деления . При удвоении клеток происходят два события: расхождение реплицированных хромосом и разделение клеточного тела, цитотомия . Первая часть события у эукариот осуществляется с помощью так называемого веретена деления, состоящего из микротрубочек, а вторая часть происходит за счет участия акто-миозиновых комплексов, вызывающих образование перетяжки у клеток животного происхождения или за счет участия микротрубочек и актиновых филаментов в образовании фрагмопласта, первичной клеточной перегородки у клеток растений.

В образовании веретена деления у всех эукариотических клеток принимают участие два рода структур: полярные тельца (полюса) веретена и кинетохоры хромосом. Полярные тельца, или центросомы, являются центрами организации (или нуклеации) микротрубочек. От них своими «+»-концами отрастают микротрубочки, образующие пучки, тянущиеся к хромосомам. У клеток животных центросомы включают в свой состав и центриоли. Но у многих эукариот центриолей нет, а центры организации микротрубочек присутствуют в виде бесструктурных аморфных зон, от которых отходят многочисленные микротрубочки. Как правило, при организации аппарата деления участвуют две центросомы или два полярных тельца, находящиеся на противоположных концах сложного, веретенообразного тела, состоящего из микротрубочек. Второй структурой, характерной для митотического деления клеток, связывающей микротрубочки веретена с хромосомой, являются кинетохоры . Именно кинетохоры, взаимодействуя с микротрубочками, ответственны за перемещение хромосом при клеточном делении.

Все эти компоненты, а именно, полярные тельца (центросомы), микротрубочки веретена и кинетохоры хромосом встречаются у всех эукариотических клеток, начиная с дрожжей и кончая млекопитающими, и обеспечивают сложный процесс расхождения реплицированных хромосом.

Различные типы митоза эукариот

Описанное выше деление клеток животных и растений – не единственная форма непрямого деления клеток (рис. 301). Наиболее простой тип митоза – плевромитоз . Он в какой-то степени напоминает бинарное деление прокариотических клеток, у которых нуклеоиды после репликации остаются связанными с плазматической мембраной, которая начинает как бы расти между точками связывания ДНК и тем самым как бы разносит хромосомы в разные участки клетки (о делении прокариот см. ниже). После этого при образовании клеточной перетяжки каждая из молекул ДНК окажется в новой отдельной клетке.

Как уже говорилось, характерным для деления эукариотических клеток является образование веретена, построенного из микротрубочек (рис. 302). При закрытом плевромитозе (закрытым он называется потому, что расхождение хромосом происходит без нарушения ядерной оболочки) в качестве центров организации микротрубочек (ЦОМТ) участвуют не центриоли, а другие структуры, находящиеся на внутренней стороне ядерной мембраны. Это так называемые полярные тельца неопределенной морфологии, от которых отходят микротрубочки. Этих телец два, они расходятся друг от друга, не теряя связи с ядерной оболочкой, и в результате этого образуются два полуверетена, связанные с хромосомами. Весь процесс образования митотического аппарата и расхождения хромосом происходит в этом случае под ядерной оболочкой. Такой тип митоза встречается среди простейших, он широко распространен у грибов (хитридиевые, зигомицеты, дрожжи, оомицеты, аскомицеты, миксомицеты и др.). Встречаются формы полузакрытого плевромитоза, когда на полюсах сформированного веретена ядерная оболочка разрушается.

Другой формой митоза является ортомитоз . В этом случае ЦОМТ располагаются в цитоплазме, с самого начала идет образование не полуверетен, а двухполюсного веретена. Существуют три формы ортомитоза: открытый (обычный митоз), полузакрытый и закрытый . При полузакрытом ортомитозе образуется бисимметричное веретено с помощью расположенных в цитоплазме ЦОМТ, ядерная оболочка сохраняется в течение всего митоза, за исключением полярных зон. В качестве ЦОМТ здесь могут обнаруживаться массы гранулярного материала или даже центриоли. Эта форма митоза встречается у зеленых водорослей, грегарин, бурых, красных водорослей, у некоторых низших грибов. При закрытом ортомитозе полностью сохраняется ядерная оболочка, под которой образуется настоящее веретено. Микротрубочки формируются в кариоплазме, реже отрастают от внутриядерного ЦОМТ, не связанного (в отличие от плевромитоза) с ядерной оболочкой. Такого типа митозы характерны для деления микронуклеусов инфузорий, но встречаются и у других простейших. При открытом ортомитозе ядерная оболочка полностью распадается. Этот тип деления клеток характерен для животных организмов, некоторых простейших и для клеток высших растений. Эта форма митоза в свою очередь представлена астральным и анастральным типами (рис. 303).

Из этого краткого рассмотрения видно, что главной особенностью митоза вообще является возникновение структур веретена деления, образующегося в связи с разнообразными по своему строению ЦОМТ.

Морфология митотической фигуры

Как уже говорилось, митотический аппарат наиболее подробно изучен у клеток высших растений и животных. Особенно хорошо он бывает выражен на стадии метафазы митоза (рис. 302). В живых или фиксированных клетках в метафазе в экваториальной плоскости клетки располагаются хромосомы, от которых в противоположных направлениях тянутся т.н. нити веретена, сходящиеся на двух разных полюсах митотической фигуры. Так что митотическое веретено – это совокупность хромосом, полюсов и волокон. Волокна веретена представляют собой одиночные микротрубочки или их пучки. Начинаются микротрубочки от полюсов веретена и часть из них направляется к центромерам, где расположены кинетохоры хромосом (кинетохорные микротрубочки), часть проходит дальше по направлению к противоположному полюсу, но до него не доходит – “межполюсные микротрубочки”. Кроме того от полюсов отходит группа радиальных микротрубочек, образуя вокруг них как бы “лучистое сияние” - это астральные микротрубочки.

По общей морфологии митотические фигуры делятся на два типа: астральный и анастральный (рис. 303).

Астральный тип веретена (или конвергентный) характеризуется тем, что его полюса представлены небольшой зоной, к которой сходятся (конвергируют) микротрубочки. Обычно в полюсах астральных веретен располагаются центросомы, содержащие центриоли. Хотя известны случаи бесцентриолярных астральных митозов (при мейозе некоторых беспозвоночных). От полюсов кроме того расходятся радиальные микротрубочки, не входящие в состав веретена, а образующие звездчатые зоны – цитастеры. В целом же такой тип митотического веретена напоминает скорее гантель (рис. 303а).

Анастральный тип митотической фигуры не имеет на полюсах цитастеров. Полярные области веретена здесь широкие, их называют полярными шапочками, в их состав не входят центриоли. Волокна веретена в данном случае не отходят от одной точки, а расходятся широким фронтом (дивергируют) от всей зоны полярных шапочек. Этот тип веретена характерен для делящихся клеток высших растений, хотя иногда встречается и у высших животных. Так, например, в раннем эмбриогенезе млекопитающих при делении созревания ооцита и при I и II делении зиготы наблюдаются бесцентриолярные (дивергентные) митозы. Но уже начиная с третьего клеточного деления и во всех последующих, клетки делятся при участии астральных веретен, в полюсах которых всегда обнаруживаются центриоли.

В целом же для всех форм митоза общими структурами остаются хромосомы с их кинетохорами, полярные тельца (центросомы) и волокна веретена.

Центромеры и кинетохоры

Центромеры, как участки связывания хромосом с микротрубочками, могут иметь различную локализацию по длине хромосом. Так встречаются голоцентрические центромеры, когда микротрубочки связываются по длине всей хромосомы (некоторые насекомые, нематоды, некоторые растения) и моноцентрические центромеры, где микротрубочки связаны с хромосомами в одном участке (рис. 304). Моноцентрические центромеры могут быть точечными (например у некоторых почкующихся дрожжей), когда к кинетохору подходит всего лишь одна микротрубочка, и зональными , где к сложному кинетохору подходит пучок микротрубочек. Несмотря на разнообразие зон центромер, все они связаны со сложной структурой кинетохора , имеющего принципиальное сходство строения и функций у всех эукариот.

Проще всего строение моноцентрического кинетохора у клеток пекарских дрожжей (Saccharomyces cerevisiae). Он связан со специальным участком ДНК на хромосоме (центромерный или СЕN-локус). Этот участок состоит из трех элементов ДНК: СDЕ I, СDЕ II, СDЕ III. Интересно, что последовательности нуклеотидов в СDЕ I и СDЕ III – очень консервативны и сходны с таковыми у дрозофиллы. Участок СDЕ II – может быть разной величины, и обогащен А-Т парами. За связь с микротрубочками у S. cerevisia отвечает участок СDЕ III , взаимодействующий с целым рядом белков.

Зональные центромеры состоят из многократно повторяющихся СЕN-локусов, обогащенных участками конститутивного гетерохроматина, содержащего сателлитную ДНК, связанную с кинетохорами.

Кинетохоры – специальные белковые структуры, большей частью располагающиеся в зонах центромер хромосом (рис. 304). Кинетохоры лучше изучены у высших организмов. Кинетохоры – это сложные комплексы, состоящие из многих белков. Морфологически они очень сходны, имеют одинаковое строение, начиная от диатомовых водорослей, кончая человеком. Кинетохоры представляют собой трехслойные структуры (рис. 305): внутренний плотный слой, примыкающий к телу хромосомы, средний рыхлый слой, и внешний плотный слой. От внешнего слоя отходят множество фибрилл, образуя т.н. фиброзную корону кинетохора (рис. 306).

В общей форме кинетохоры имеют вид пластинок или дисков, лежащих в зоне первичной перетяжки хромосомы, в центромере. На каждую хроматиду (хромосому) обычно приходится по одному кинетохору. До анафазы кинетохоры на каждой сестринской хроматиде располагаются оппозитно, связываясь каждый со своим пучком микротрубочек. У некоторых растений кинетохор имеет вид не пластинок, а полусфер.

Кинетохоры представляют собой сложные комплексы, где кроме специфической ДНК участвует множество кинетохорных белков (СЕNР-белки) (рис. 307). В участке центромеры хромосомы под трехслойным кинетохором расположен участок гетерохроматина, обогащенного -сателлитной ДНК. Здесь же обнаруживается ряд белков: СЕNР-В, который связывается с - ДНК, МСАК – кинезино подобный белок и белки, ответственные за спаривание сестринских хромосом (когезины). Во внутреннем слое кинетохора обнаружен также ряд белков: СЕNР-А, вариант гистона Н 3 , который, вероятно, связывается с СDЕ II участком ДНК, СЕNР-G, связывающийся с белками ядерного матрикса, консервативный белок СЕNР-С, с неизвестной пока функцией. В среднем рыхлом слое обнаружен белок 3F3/2, который, вероятно, как-то регистрирует натяжение пучков микротрубочек.

Во внешнем плотном слое кинетохора обнаружены белки СЕNР-Е и СЕNР- F, участвующие в связывании микротрубочек. Кроме того, здесь обнаружены белки семейства цитоплазматических динеинов.

Функциональная роль кинетохоров заключается в связывании между собой сестринских хроматид, в закреплении митотических микротрубочек, в регуляции разъединения хромосом и в собственно движении хромосом во время митоза при участии микротрубочек.

К кинетохорам подходят микротрубочки, растущие от полюсов, от центросом. Минимальное их число у дрожжей – одна микротрубочка на каждую хромосому. У высших растений это число достигает 20-40. В последнее время удалось показать, что сложные кинетохоры высших организмов представляют собой структуру, состоящую из повторяющихся субъединиц, каждая из которых способна образовывать связи с микротрубочками (рис. 308). По одной из моделей строения центромерного участка хромосомы (Зинковски, Мейне, Бринкли, 1991) предложено, что в интерфазе на специфических участках ДНК расположены субъединицы кинетохора, содержащие все характерные белки. По мере конденсации хромосом в профазе эти субъединицы группируются таким образом, что создается зона, обогащенная этими белковыми комплексами – кинетохор.

КЛЕТКИ Клетка элементарная живая система, основа строения и жизнедеятельности всех...

  • Лекция

    Клетка - наименьшая элементарная единица живого Клетки

  • Гистология лекционный курс часть i общая гистология лекция 1 введение в курс гистологии история науки методы исследования цитология

    Лекция

    Положения современной клеточной теории: I. Клетка - наименьшая элементарная единица живого , вне которой нет жизни. II ... . Клетки гомологичны - т.е. при всем богатом разнообразии...

  • Ответы на билеты по биологии для итоговой аттестации учащихся 9 класса билет № 1 1 биология как наука ее достижения связи с другими науками методы изучения живых объектов роль биологии в жизни и практической деятельности человека

    Документ

    ... : 1. Клетка - элементарная единица живого , способная к самообновлению, саморегуляции и самовоспроизведению, является единицей строения, функционирования и развития всех живых организмов. 2. Клетки ...

  • Материал из Юнциклопедии


    Центриоль - органоид клеток животных (кроме некоторых простейших) и низших растений (некоторых водорослей и мхов). В отличие от остальных клеточных органоидов у цент-риоли четкая радиально-симметричная структура, почти одинаковая для всех организмов.

    Диаметр центриоли 0,2 мкм, а длина - от 0,2 до 0,6 мкм. Наиболее заметный ее компонент - 9 строенных микротрубочек, расположенных строго упорядоченно по периферии. Микротрубочки соединены между собой системой связок, а снаружи одеты чехлом из бесструктурного материала - матриксом. Ажурная структура центриолей передается от одной клетки к двум дочерним своеобразным способом, который получил название репликации (удвоения). В отличие от репликации ДНК, где половинки исходной молекулы служат матрицами для образования двух новых молекул, старые центриоли не являются матрицами для новых.

    В нормальной клетке всего 2 центриоли. Они реплицируются при подготовке клетки к делению во время синтеза ДНК (см. Клеточный цикл). Около каждой из этих центриолей появляется по одной коротенькой дочерней, которые располагаются либо под прямым углом к материнским, либо торец в торец. Дочерние центриоли растут и после деления клетки отходят от материнских и созревают в течение всего клеточного цикла. Таким образом, как установлено, после деления в клетку попадает одна зрелая и одна незрелая центриоль.

    В клетках центриоли входят в состав клеточного центра - области цитоплазмы, откуда берут свое начало большинство, если не все, микротрубочки клетки. Во время митоза центриоли определяют местоположение полюсов веретена. В то же время сами центриоли с микротрубочками не контактируют, но вокруг центриолей располагается некая субстанция, индуцирующая рост микротрубочек: во время митоза - микротрубочек веретена, а в интерфазе - цитоплазматических микротрубочек. В некоторых случаях центриоли могут образовывать ресничку (см. Жгутики и реснички), и тогда их микротрубочки, надстраи-ваясь, дают микротрубочки аксонемы. В клетках ресничного эпителия центриоли, многократно реплицируясь, дают начало базальным тельцам. Предполагают, что центриоли осуществляют координацию поведения всей клетки, в особенности ее цитоскелета.

    Базальные тельца по своей структуре близки к центриолям, но они, как правило, несколько длиннее (0,5-0,7 мкм, могут достигать 8 мкм). Это высокоспециализированные органоиды, которые присутствуют только в клетках, имеющих реснички (жгутики). По своему происхождению базальные тельца не всегда связаны с центриолями (например, они есть в лишенных центриолей клетках инфузорий) и образуются различными способами. Главная функция базального тельца - образование реснички (жгутика). Базальные тельца, прикрепляясь к мембране клетки, определяют местоположение ресничек, от их микротрубочек берут начало аксонемы ресничек.

    Биохимический состав центриолей и базальных телец не вполне ясен. Они не содержат ДНК, имеют немного РНК и различные белки (включая тубулин).

    Базальное тельце

    органоид, от к-рого исходят жгутики бактерий и простейших. Располагается в цитоплазме. Имеет вид дисков, состоящих из проксимальных концов фибрилл жгутиков, молекул ДНК и мембранных структур. См. Жгутики.

    (Источник: «Словарь терминов микробиологии»)

    • - kinetosome - кинетосома, .Форма центриоли , способна к самовоспроизводству; К. располагаются в основании жгутиков и ресничек и участвуют в процессах их формирования...

      Молекулярная биология и генетика. Толковый словарь

    • - см. Акросома...

      Большой медицинский словарь

    • - А. д., измеряемое у человека с помощью метода Короткова непосредственно после ночного сна, до того как исследуемый встал с постели, натощак, в положении лежа на спине...

      Большой медицинский словарь

    • - см. Перечень анат. терминов...

      Большой медицинский словарь

    • - органелла в виде мелкого тельца в основании ресничек или жгутиков клетки; по ультраструктуре, отношению к красителям, способам репродукции и функциям является гомологом центриоли...

      Большой медицинский словарь

    • - кинетосомa , внутриклеточная структура эукариот, лежащая в основании ресничек и жгутиков и служащая для них опорой. Ультраструктура Б. т. сходна с ультраструктурой центриоли...

      Биологический энциклопедический словарь

    • - см. Хроматин половой...

      Большой медицинский словарь

    • - внутриклеточное образование, расположенное у основания каждого жгутика или реснички у одноклеточных, а также в клетках тканей многоклеточных организмов и в сперматозоидах...

      Большая Советская энциклопедия

    • - Тв. те/льцем...

      Орфографический словарь русского языка

    • - ТЕ́ЛЬЦЕ, -а, мн. тельца, телец, тельцам, ср. 1. см. тело. 2. обычно мн. Небольшое образование в составе живой ткани человека и животного. Красные кровяные тельца. Белые кровяные тельца...

      Толковый словарь Ожегова

    • - ТЕ́ЛЬЦЕ, тельца, ср. 1. уменьш.-ласк. к тело во 2 знач. . Детское тельце. 2. только ед. Мякоть плода. 3. Зародыш в яйце. 4. Острый конец яйца...

      Толковый словарь Ушакова

    • - те́льце ср. разг. 1. уменьш. к сущ. тело II 2., 4. 2. ласк. к сущ. тело II 2., 4...

      Толковый словарь Ефремовой

    • - т"ельце, -а, мн. ч. т"ельца, т"елец и т"ельцев, т"...

      Русский орфографический словарь

    • - Á сущ; 104 см. _Приложение II т́е́льца мн. т́е́льца т́е́лец На пристани толпятся дети, Забавны их тонкие те́льца, Они сошлись еще на рассвете Посмотреть, где станут пришельцы...

      Словарь ударений русского языка

    • - 1. те́льце, те́льца, те́льца, те́лец, те́льцу, те́льцам, те́льце, те́льца, те́льцем, те́льцами, те́льце, те́льцах 2...

      Формы слова

    • - пластид, тело,...

      Словарь синонимов

    "Базальное тельце" в книгах

    Луна в Тельце

    Из книги Заготовки. Легко и по правилам автора Соколовская М.

    Венера в Тельце

    автора Соляник Катерина

    Венера в Тельце В Тельце Венера очень сильна, поскольку является покровительницей этого знака. Но опять-таки понятие «силы» вовсе не означает, что хозяин гороскопа с таким положением Венеры умеет любить, как никто другой. Вообще «сила» или «слабость» Венеры ни в коей мере

    Марс в Тельце

    Из книги Астрология любви и отношений. Дата рождения подскажет, как встретить свою половину и создать крепкую семью автора Соляник Катерина

    Марс в Тельце Слабая позиция Марса в этом знаке предполагает то, что на уровне подсознания человек не ощущает себя сильным. Это лишь его внутренние переживания, формирующие самооценку и, следовательно, являющиеся мотивами к определенного типа и вида действиям. «Я

    Луна в Тельце

    автора

    Луна в Тельце Телец усиливает и стабилизирует влияние Луны, – для сравнения, находясь в других знаках, Луна способствует переменчивости и изменчивости.Лучшие качества дней Тельца: надежность, упорство, любовь. Отрицательное влияние: упрямство, недоверчивость, косность,

    Луна в Тельце

    Из книги Луна – спутник вашей жизни автора Семенова Анастасия Николаевна

    Луна в Тельце Человек с Луной в Тельце консервативен, может быть эстетом, любит природу, искусство, особенно музыку и живопись, ценит красоту, сам способен петь, рисовать, лепить. Эти качества сочетаются с тягой к комфорту, а уж в упрямстве Телец и вовсе не знает себе равных.

    Луна в Тельце

    Из книги Луна – спутник вашей жизни автора Семенова Анастасия Николаевна

    Луна в Тельце В дни Тельца нельзя проводить операции на шее, на горле, в том числе и внешние (косметические процедуры на шее, глубокие пилинги, удаление родинок, папиллом и т. п.). В эту пору возрастает нагрузка на голосовые связки, челюсти, уши. Следует как можно меньше

    Луна в Тельце

    Из книги Луна – спутник вашей жизни автора Семенова Анастасия Николаевна

    Луна в Тельце Посаженные в дни Тельца растения вырастают низкорослыми, коренастыми и красиво цветут. Зимующие в земле многолетние культуры будут крепкими, приземистыми. Это знак всех озимых посевов. При Луне в Тельце хорошо удаются посадки деревьев и кустарников, стволы

    Луна в Тельце

    Из книги Большая книга Луны. Благоприятный прогноз на каждый день автора Семенова Анастасия Николаевна

    Луна в Тельце Преимущества и недостатки Человек с Луной в Тельце – вечный реалист и прагматик. Он не стремится к заоблачным далям, жизнь для него – это то, что происходит сейчас и случалось раньше. Прошлому он уделяет довольно много внимания, потому что консервативен,

    Луна в Тельце.

    автора Шварц Теодор

    Луна в Тельце. Телец – знак материальной стабильности, настойчивости и усердия, поэтому данный период благоприятен для проведения разных финансовых операций. Вложения в ценные бумаги обязательно приведут к получению дохода. Хорошо пойдут дела, связанные с

    Луна в Тельце.

    Из книги Большая книга тайных наук. Имена, сновидения, лунные циклы автора Шварц Теодор

    Луна в Тельце. Положительные качества – упорство, сердечность, надежность, художественные способности.Отрицательные качества – упрямство, недоверчивость, боязнь перемен, собственничество и ревнивость.Телец для Луны является почти идеальным, не только усиливающим, но и

    Луна в Тельце.

    Из книги Большая книга тайных наук. Имена, сновидения, лунные циклы автора Шварц Теодор

    Луна в Тельце. Идеальное время для посещения салона. При стрижке в этот период волосы хорошо растут, укрепляются, приобретают стойкость к внешним воздействиям, меньше

    Луна в Тельце

    Из книги Тайны лунного гороскопа автора Семенова Анастасия Николаевна

    Луна в Тельце Человек с Луной в Тельце – вечный реалист и прагматик. Он не стремится к заоблачным далям, для него жизнь – это то, что происходит сейчас и происходило раньше. Прошлому он уделяет довольно много внимания, потому что консервативен, любит делать «как всегда» и

    Луна в Тельце

    Из книги Правила Луны на каждый день автора Лурье Элен

    Луна в Тельце Это знак Земли, прохладный и приземленный, практичный и реалистичный, он не витает в облаках, покровительствует любым работам, а особенно садовым. Хорошо повозиться с землей, сажать растения, ухаживать за ними, лечить половые органы, органы малого таза,

    Луна в Тельце

    Из книги Дачный лунный календарь на 2013 год автора Кизима Галина Александровна

    Луна в Тельце Телец отвечает за гортань, зубы, челюсти, миндалины, горло, уши, систему кровообращения и органы речи. Во время нахождения Луны в Тельце не следует подвергать операции эти части тела, а также переливать кровь.При Луне в Тельце захочется комфорта и уюта.

    Базальное тельце

    Из книги Большая Советская Энциклопедия (БА) автора БСЭ






    Микротрубочки. Центриоли. Базальные тельца. Реснички. Жгутики. Внутриклеточный транспорт.

    Электронный микроскоп выявил наличие структуры в «основном веществе» цитоплазмы, которое ранее представлялось бесструктурным. Во всех эукариотических клетках была обнаружена сеть тонких белковых нитей. Все вместе они образуют так называемый цитоскелет.

    Различают по меньшей мере три типа таких структур: микротрубочки , микрофиламенты и промежуточные филаменты. Их функции связаны с внутриклеточным движением, со способностью клеток поддерживать свою форму, а также с некоторыми другими видами активности клеток, такими, например, как эндоцитоз и экзоцитоз. Мы рассмотрим здесь только микротрубочки.

    Микротрубочки содержатся почти во всех эукариотических клетках. Это полые, очень тонкие неразветвленные трубочки диаметром приблизительно 24 нм; их стенки толщиной около 5 нм построены из спирально упакованных субъединиц белка тубулина.

    Рисунок дает представление о том, как выглядят микротрубочки на электронных микрофотографиях. Растут микротрубочки с одного конца путем добавления тубулиновых субъединиц. Рост видимо, может начаться лишь при наличии матрицы; есть основания полагать, что роль таких матриц играют какие-то очень мелкие кольцевые структуры, которые были выделены из клеток и которые, как выяснилось, состоят из тубулиновых субъединиц. В интактных клетках ту же функцию выполняют центриоли, поэтому их иногда называют центрами организации микротрубочек (ЦОМ). Центриоли состоят из коротких микротрубочек.

    Микротрубочки принимают участие в различных внутриклеточных процессах; некоторые мы здесь упомянем.

    Распределение микротрубочек в клетке. Микротрубочки расходятся от центра организации микротрубочек (ЦОМ), находящегося рядом с ядром. В ЦОМ содержится центриоль. Микротрубочки видны на этой микрофотографии благодаря использованию флуоресцирующих антител, способных специфически соединяться с их белком. Представленная здесь клетка - фибробласт; фибробласты обычно содержатся в соединительной ткани; в них синтезируется коллаген.

    Центриоли и деление ядра

    Центриоли это мелкие полые цилиндры (длиной 0,3-0,5 мкм и около 0,2 мкм в диаметре), встречающиеся в виде парных структур почти во всех животных клетках. Каждая центриоль построена из девяти триплетов микротрубочек. В начале деления ядра центриоли удваиваются и две новые пары центриолей расходятся к полюсам веретена - структуры, по экватору которой выстраиваются перед своим расхождением хромосомы. Само веретено состоит из микротрубочек («нитей веретена»), при сборке которых центриоли играют роль центров организации.

    Микротрубочки регулируют расхождение хроматид или хромосом. Осуществляется это за счет скольжения микротрубочек. В клетках высших растений центриоли отсутствуют, хотя веретено в них при делении ядра образуется. Возможно, что в этих клетках имеются какие-то очень мелкие центры организации микротрубочек, не выявляемые даже при помощи электронного микроскопа.

    Базальные тельца, реснички и жгутики

    Реснички и жгутики идентичны по своему строению, но жгутики длиннее ресничек. Обе эти органеллы представляют собой выросты клеток. Движутся они либо однонаправленно (биение ресничек), либо волнообразно (движения жгутиков). Служат реснички и жгутики как для передвижения отдельных клеток, так и для того, чтобы перегонять жидкость вдоль поверхности клеток (так перегоняют реснички слизь в дыхательных путях). В основании каждой реснички и жгутика всегда обнаруживается базалыюе тельце. По своему строению базальные тельца идентичны центриолям и можно думать, что они образуются путем удвоения центриолей. Вероятно, они также действуют как центры организации микротрубочек, потому что ресничкам и жгутикам тоже свойственно характерное расположение микротрубочек («9 + 2»).

    В ресничках и жгутиках движение осуществляется за счет скольжения микротрубочек. Более подробно эти процессы описаны в нашей статье. Отметим, что жгутики бактерий устроены проще, чем жгутики эукариот, и базальные тельца у них отсутствуют.

    Внутриклеточный транспорт

    Микротрубочки участвуют также в перемещении различных клеточных органелл, например в перемещении пузырьков Гольджи к формирующейся клеточной пластинке (рис. 5.30). В клетке идет непрерывный транспорт: перемещаются пузырьки Гольджи, направляются к аппарату Гольджи пузырьки, отпочковывающиеся от ЭР, движутся лизосомы, митохондрии и другие органеллы. Все это движение приостанавливается, если повреждена система микротрубочек.