Главная · Внутренняя отделка · Как высчитывается погрешность измерений. Расчет погрешностей емкости с помощью коэффициента Стьюдента. Расчет погрешности измерения мощности и сопротивления. Действительная постоянная счетчика

Как высчитывается погрешность измерений. Расчет погрешностей емкости с помощью коэффициента Стьюдента. Расчет погрешности измерения мощности и сопротивления. Действительная постоянная счетчика

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: . Вы найдете их список внизу страницы.

Абсолютная погрешность – это фактическая ошибка, допущенная при измерении какой-либо величины. Относительная погрешность сравнивает абсолютную погрешность со значением измеряемой величины. Чтобы вычислить относительную погрешность, следует найти и абсолютную погрешность. Если вы измеряете предмет, длина которого равна 12 см, и вы допустили ошибку в 6 см, то относительная погрешность будет огромной. Но если длина измеряемого предмета равна 12 м, а ошибка – 6 см, то относительная погрешность будет значительно меньше, даже с учетом того, что абсолютная погрешность (6 см) не изменилась.

Шаги

Вычисление абсолютной погрешности

    Если вам дано ожидаемое значение, вычтите из него полученное вами значение, чтобы вычислить абсолютную погрешность. Как правило, ожидаемое значение находится в ходе тестовых или лабораторных испытаний. Ожидаемое значение является наиболее точным значением некоторой величины, которое используется при различных вычислениях. Чтобы получить абсолютную погрешность, сравните результаты ваших измерений с ожидаемым значением – так вы узнаете, насколько ваши результаты отличаются от ожидаемого значения. Для этого просто вычтите полученное вами значение из ожидаемого. Если разность отрицательная, превратите ее в положительную, проигнорировав знак «минус». Вы получите абсолютную погрешность.

    Теперь допустим, что абсолютная погрешность – это наименьшая единица измерения. Например, рулетка имеет миллиметровые деления, то есть ее наименьшей единицей является 1 мм. Таким образом, вы можете измерить расстояние с точностью до ± 1 мм; в этом случае абсолютная погрешность составляет 1 мм.

    • Это верно для любых измерительных инструментов или систем. Например, на корпус многих научных инструментов, таких как прецизионные весы и измерительные приборы, наносят маркировку об абсолютной погрешности в виде «± ____».
  1. Не забудьте приписать соответствующие единицы измерения. Предположим, что абсолютная погрешность равна 2 м. Такая информация позволит наглядно представить величину ошибки. Но если вы записываете, что погрешность равна 2, то эта цифра ничего не значит. Используйте те же единицы измерения, которыми вы пользовались в ваших измерениях.

    Попрактикуйтесь на нескольких примерах. Это наилучший способ научиться вычислять погрешность. Решите следующие задачи (ответы приведены в конце каждой задачи).

    • На уроке химии в результате реакции ученик получил вещество массой 32 г. Известно, что действительное значение выхода этой реакции равно 34 г. Абсолютная погрешность равна ± 2 г.
    • На уроке химии ученику необходимо 10 мл воды, чтобы вызвать реакцию; при этом погрешность капельницы составляет «± 0,5 мл». В этом случае абсолютная погрешность измерений равна ± 0,5 мл.
  2. Уясните, что приводит к появлению погрешности и как ее устранить. Всякое научное исследование подразумевает наличие ошибок – даже в научных работах, за которые вручаются Нобелевские премии, сообщается о допущениях или погрешностях. Но если вы определите причину появления погрешности, вы, возможно, сможете устранить ее.

Вычисление относительной погрешности

    Разделите абсолютную погрешность на действительное значение исследуемой величины. Так вы вычислите относительную погрешность. Эта формула позволит вам выяснить, насколько полученное вами значение отличается от действительного значения изучаемой величины. Конечно, прекрасно, если относительная погрешность мала. Продолжим рассматривать пример с измерением расстояния между двумя деревьями.

    Полученный результат умножьте на 100, чтобы выразить относительную погрешность в процентах. Вы можете представить относительную погрешность в виде обыкновенной дроби, десятичной дроби или в процентах – в этом случае умножьте десятичную дробь на 100. Так вы узнаете, какой процент от полученного вами значения составляет погрешность. Если вы измеряете длину 60 м лодки, а погрешность составляет 0,6 м, то процент ошибки будет значительно меньше, чем при вычислении расстояния между деревьями (6 м) с погрешностью 0,6 м. Погрешность представляет собой небольшой процент от экспериментального значения.

Пусть при измерениях систематические погрешности пренебрежимо малы. Рассмотрим случай, когда измерение проведено большое число раз (n→∞).

Как показывает опыт, отклонение результатов измерений от их среднего значения в большую или меньшую сторону одинаковы. Результаты измерений с малым отклонением от среднего значения наблюдается значительно чаще, чем с большими отклонениями.

Расположим все численные значения результатов измерений в ряд в порядке их возрастания и разделим этот ряд на равные интервалы
. Пусть– число измерений с результатом, попавшим в интервал [
]. Величина
есть вероятность ΔP i (х) получения результата со значением в интервале [
].

Графически представим
, соответствующее каждому интервалу [
] (рис.1). Изображенная на рис.1 ступенчатая кривая называется гистограммой. Допустим, что измерительный прибор обладает чрезвычайно высокой чувствительностью. Тогда ширину интервала можно сделать бесконечно малой величинойdx. Ступенчатая кривая в этом случае заменяется кривой, представляемой функцией φ(х) (рис.2). Функцию φ(х) принято называть функцией плотности распределения. Её смысл состоит в том, что произведение φ(х)dx есть вероятность dP(x) получения результатов со значением в интервале от х до х+dх. Графически значение вероятности представляется в виде площади заштрихованного прямоугольника. Аналитически функция плотности распределения записывается следующим образом:

. (5)

Представленную в виде (5) функцию φ(х) называют функцией Гаусса, а соответствующее распределение результатов измерений Гауссовым или нормальным.

Параметры
иσ имеют следующий смысл (рис.2).

–среднее значение результатов измерений. При
=
функция Гаусса достигает максимального значения. Если число измерений бесконечно велико, то
равно истинному значению измеряемой величины.

σ – характеризует степень разброса результатов измерения от их среднего значения. Параметр σ вычисляется по формуле:

. (6)

Этот параметр представляет собой среднеквадратичную погрешность. Величину σ 2 в теории вероятностей называют дисперсией функции φ(х).

Чем выше точность измерений, тем ближе располагаются результаты измерений к истинному значению измеряемой величины, и, следовательно, меньше σ.

Вид функции φ(х), очевидно, не зависит от числа измерений.

В теории вероятностей показано, что 68% всех измерений дадут результат, который располагается в интервале , 95% – в интервале и 99,7% в интервале .

Таким образом, с вероятностью (надёжностью) 68% величина отклонения результата измерения от среднего значения лежит в интервале [
], с вероятностью (надёжностью) 95% – в интервале [
] и с вероятностью (надежностью) 99,7% – в интервале [
].

Интервал, соответствующий той или иной вероятности отклонения от среднего значения, называется доверительным.

В реальных экспериментах число измерений, очевидно, не может быть бесконечно большим, поэтому маловероятно, чтобы
совпало с истинным значением измеряемой величины
. В связи с этим важно оценить на основе теории вероятностей величину возможного отклонения
от
.

Расчеты показывают, что при числе измерений более 20 с вероятностью 68%
попадает в доверительный интервал [
], с вероятностью 95% – в интервале[
], с вероятностью 99,7% – в интервале [
].

Величина , определяющая границы доверительного интервала, называется стандартным отклонением или просто – стандартом.

Стандарт вычисляется по формуле:

. (7)

С учетом формулы (6), выражение (7) приобретает следующий вид:

. (8)

Чем больше число измерений n, тем ближе Х располагается к
. Если число измерений не велико меньше 15, то вместо распределения Гаусса используют распределение Стьюдента, которое приводит к увеличению ширины доверительного интервала возможного отклонения Х от
вt n , p раз.

Сомножитель t n , p называется коэффициентом Стьюдента. Индексы Р и n указывают, с какой надежностью и какому числу измерений соответствует коэффициент Стьюдента. Величина коэффициента Стьюдента для данного числа измерений и заданной надежности определяется по таблице 1.

Таблица 1

Коэффициент Стьюдента.

Например, при заданной надежности 95% и числе измерений n=20 коэффициент Стьюдента t 20,95 =2,1 (доверительный интервал
) при числе измеренийn=4, t 4,95 =3,2 (доверительный интервал
). То есть, при увеличении числа измерений с 4 до 20 возможное отклонение
отX уменьшается в 1,524 раза.


Ниже приводится пример расчета абсолютной случайной погрешности

Х i –

(Х i – ) 2

По формуле (2) находим среднее значение измеряемой величины
(без указания размерности физической величины)

.

По формуле (8) вычисляем величину стандартного отклонения

.

Коэффициент Стьюдента, определенный для n=6, и Р=95%, t 6,95 =2,6 окончательный результат:

Х=20,1±2,6·0,121=20,1±0,315 (с Р=95%).

Вычисляем относительную погрешность:

.

При записи окончательного результата измерений нужно иметь в виду, что погрешность должна содержать только одну значащую цифру (отличную от нуля). Две значащие цифры в погрешности записываются лишь в том случае, если предпоследняя цифра 1. Большее число значащих цифр записывать бесполезно, поскольку они будут не достоверны. В записи среднего значения измеряемой величины последняя цифра должна принадлежать тому же разряду, что и последняя цифра в записи погрешности.

Х=(243±5)·10 2 ;

Х=232,567±0,003.

При проведении нескольких измерений может получится один и тот же результат. Это возможно в том случае, если чувствительность измерительного прибора низкая. Когда измерение производится прибором с низкой чувствительностью достаточно и однократного измерения. Не имеет смысла, например, многократно измерять длину стола рулеткой с сантиметровыми делениями. Результат измерения в этом случае будет один и тот же. Погрешность при проведении однократного измерения определяется ценой наименьшего деления прибора. Она называется приборной погрешностью. Её значение
вычисляется по следующей формуле:

, (10)

где γ – цена деления прибора;

t ∞, p – коэффициент Стьюдента, соответствующий бесконечно большому числу измерений.

С учетом приборной погрешности, абсолютная погрешность с заданной надежностью определяется по формуле:

, (11)

где
.

С учетом формул (8) и (10), (11) записывается так:

. (12)

В литературе для сокращения записи величину погрешности иногда не указывают. Предполагается, что величина погрешности составляет половину единицы последней значащей цифры. Так, например, величина радиуса Земли записана в виде
м. Это означает, что в качестве погрешности следует взять величину, равную ±
м.

Пусть измеряемая имеет известное значение величина X . Естественно, отдельные, найденные в процессе измерения значения этой величины x 1 , x 2 ,… xn заведомо не вполне точны, т.е. не совпадают с X . Тогда величина
будет являться абсолютной погрешностью i -го измерения. Но поскольку истинное значение результата X , как правило, не известно, то реальную оценку абсолютной погрешности используя вместо X среднее арифметическое
,
которое рассчитывают по формуле:




Однако при малых объемах выборки вместо
предпочтительнее пользоваться медианой . Медианой (Ме) называют такое значение случайной величины х, при котором половина результатов имеет значение меньшее, а другая ­большее, чем Ме . Для вычисления Ме результаты располагают в порядке возрастания, то есть образуют так называемый вариационный ряд. Для нечетного количества измерений n мeдиана равна значению среднего члена ряда. Например,
для n=3

Для четных n, значение Ме равно полусумме значений двух средних результатов. Например,
для n=4

Для расчета s пользуются неокругленными результатами анализа с неточным последним десятичным знаком.
При очень большом числе выборки (n >
) случайные погрешности могут быть описаны при помощи нормального закона распределения Гаусса. При малых n распределение может отличаться от нормального. В математической статистике эта дополнительная ненадежность устраняется модифицированным симметричным t -распределением. Существует некоторый коэффициент t , называемый коэффициентом Стьюдента, который в зависимости от числа степеней свободы (f ) и доверительной вероятности (Р ) позволяет перейти от выборки к генеральной совокупности.
Стандартное отклонение среднего результата
определяется по формуле:

Величина

является доверительным интервалом среднего значения
. Для серийных анализов обычно полагают Р = 0,95.

Таблица 1. значения коэффициента Стьюдента (t )


f

Пример 1. Из десяти определений содержания марганца в пробе требуется подсчитать стандартное отклонение единичного анализа и доверительный интервал среднего значения Mn %: 0,69; 0,68; 0,70; 0,67; 0,67; 0,69; 0,66; 0,68; 0,67; 0,68.
Решение. По формуле (1) подсчитывают среднее значение анализа

По табл. 1 (приложение) находят для f=n-1=9 коэффициент Стьюдента (Р=0,95) t =2,26 и рассчитывают доверительный интервал среднего значения. Таким образом, среднее значение анализа определяется интервалом (0,679 ± 0,009) % Мn.

Пример 2. Среднее из девяти измерений давления паров воды над раствором карбамида при 20°С равно 2,02 кПа. Выборочное стандартное отклонение измерений s = 0,04 кПа. Определить ширину доверительного интервала для среднего из девяти и единичного измерения, отвечающего 95 % - й доверительной вероятности.
Решение. КоэффициентСтьюдента t для доверительной вероятности 0,95 и f = 8 равен 2,31. Учитывая, что

и
, найдем:

- ширина доверит. интервала для среднего значения

- ширина доверит. интервала для единичного измерения значения

Если же имеются результаты анализа образцов с различным содержанием, то из частных средних s путем усреднения можно вычислить общее среднее значение s . Имея m проб и для каждой пробы проводя nj параллельных определений, результаты представляют в виде таблицы:

Номер
образца

Номер анализа

Средняя погрешность рассчитывают из уравнения:



со степенями свободыf = n m , где n – общее число определений, n = m . n j .

Пример 2. Вычислить среднюю ошибку определения марганца в пяти пробах стали с различным содержанием его. Значения анализа, % Mn:
1. 0,31; 0,30; 0,29; 0,32.
2. 0,51; 0,57; 0,58; 0,57.
3. 0,71; 0,69; 0,71; 0,71.
4. 0,92; 0,92; 0,95; 0,95.
5. 1,18; 1,17; 1,21; 1,19.
Решение. По формуле (1) находят средние значения в каждой пробе, затем для каждой пробы рассчитывают квадраты разностей, по формуле (5) - погрешность.
1)
= (0,31 + 0,30 + 0,29 + 0,32)/4 = 0,305.
2)
= (0,51 + 0,57 + 0,58 + 0,57)/4 = 0,578.
3)
= (0,71+ 0,69 + 0,71 + 0,71)/4 = 0,705.
4)
= (0,92+0,92+0,95+0,95)/4 =0,935.
5)
= (1,18 + 1,17 + 1, 21 + 1,19)/4 = 1,19.

Значения квадратов разностей
1) 0,0052 +0,0052 +0,0152 +0,0152 =0,500.10 -3 .
2) 0,0122 +0,0082 +0,0022 +0,0082 =0,276.10 -3 .
3) 0,0052 + 0,0152 + 0,0052 + 0,0052 = 0,300.10 -3 .
4) 0,0152+ 0,0152 + 0,0152 + 0,0152 = 0,900.10 -3 .
5) 0,012 +0,022 +0,022 + 02 = 0,900.10 -3 .
Средняя погрешность для f = 4,5 – 5 = 15



s = 0,014 % (абс. при f =15 степеням свободы).

Когда проводят по два параллельных определения для каждого образца и находят значения х" и х" , для образцов уравнение преобразуется в выражение.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например , длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374. Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например , для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.